finished T potentials, started EA
authorhackbard <hackbard@sage.physik.uni-augsburg.de>
Mon, 9 May 2011 15:16:53 +0000 (17:16 +0200)
committerhackbard <hackbard@sage.physik.uni-augsburg.de>
Mon, 9 May 2011 15:16:53 +0000 (17:16 +0200)
bibdb/bibdb.bib
posic/thesis/basics.tex

index 437f23b..1610f9a 100644 (file)
   doi =          "10.1063/1.110334",
 }
 
   doi =          "10.1063/1.110334",
 }
 
-@article{goorsky92,
-author = {M. S. Goorsky and S. S. Iyer and K. Eberl and F. Legoues and J. Angilello and F. Cardone},
-collaboration = {},
-title = {Thermal stability of Si[sub 1 - x]C[sub x]/Si strained layer superlattices},
-publisher = {AIP},
-year = {1992},
-journal = {Applied Physics Letters},
-volume = {60},
-number = {22},
-pages = {2758-2760},
-keywords = {SILICON ALLOYS; CARBON ALLOYS; BINARY ALLOYS; MOLECULAR BEAM EPITAXY; SUPERLATTICES; ANNEALING; CHEMICAL COMPOSITION; INTERNAL STRAINS; STRESS RELAXATION; THERMAL INSTABILITIES; INTERFACE STRUCTURE; DIFFUSION; PRECIPITATION; TEMPERATURE EFFECTS},
-url = {http://link.aip.org/link/?APL/60/2758/1},
-doi = {10.1063/1.106868}
+@Article{goorsky92,
+  author =       "M. S. Goorsky and S. S. Iyer and K. Eberl and F.
+                 Legoues and J. Angilello and F. Cardone",
+  collaboration = "",
+  title =        "Thermal stability of Si[sub 1 - x]{C}[sub x]/Si
+                 strained layer superlattices",
+  publisher =    "AIP",
+  year =         "1992",
+  journal =      "Applied Physics Letters",
+  volume =       "60",
+  number =       "22",
+  pages =        "2758--2760",
+  keywords =     "SILICON ALLOYS; CARBON ALLOYS; BINARY ALLOYS;
+                 MOLECULAR BEAM EPITAXY; SUPERLATTICES; ANNEALING;
+                 CHEMICAL COMPOSITION; INTERNAL STRAINS; STRESS
+                 RELAXATION; THERMAL INSTABILITIES; INTERFACE STRUCTURE;
+                 DIFFUSION; PRECIPITATION; TEMPERATURE EFFECTS",
+  URL =          "http://link.aip.org/link/?APL/60/2758/1",
+  doi =          "10.1063/1.106868",
 }
 
 @Article{strane94,
 }
 
 @Article{strane94,
@@ -1628,18 +1634,34 @@ doi = {10.1063/1.106868}
   doi =          "10.1063/1.1730376",
 }
 
   doi =          "10.1063/1.1730376",
 }
 
+@Article{horsfield96,
+  title =        "Bond-order potentials: Theory and implementation",
+  author =       "A. P. Horsfield and A. M. Bratkovsky and M. Fearn and
+                 D. G. Pettifor and M. Aoki",
+  journal =      "Phys. Rev. B",
+  volume =       "53",
+  number =       "19",
+  pages =        "12694--12712",
+  numpages =     "18",
+  year =         "1996",
+  month =        may,
+  doi =          "10.1103/PhysRevB.53.12694",
+  publisher =    "American Physical Society",
+}
+
 @Article{abell85,
 @Article{abell85,
-  title = {Empirical chemical pseudopotential theory of molecular and metallic bonding},
-  author = {Abell, G. C.},
-  journal = {Phys. Rev. B},
-  volume = {31},
-  number = {10},
-  pages = {6184--6196},
-  numpages = {12},
-  year = {1985},
-  month = {May},
-  doi = {10.1103/PhysRevB.31.6184},
-  publisher = {American Physical Society}
+  title =        "Empirical chemical pseudopotential theory of molecular
+                 and metallic bonding",
+  author =       "G. C. Abell",
+  journal =      "Phys. Rev. B",
+  volume =       "31",
+  number =       "10",
+  pages =        "6184--6196",
+  numpages =     "12",
+  year =         "1985",
+  month =        may,
+  doi =          "10.1103/PhysRevB.31.6184",
+  publisher =    "American Physical Society",
 }
 
 @Article{tersoff_si1,
 }
 
 @Article{tersoff_si1,
@@ -1657,6 +1679,21 @@ doi = {10.1063/1.106868}
   publisher =    "American Physical Society",
 }
 
   publisher =    "American Physical Society",
 }
 
+@Article{dodson87,
+  title =        "Development of a many-body Tersoff-type potential for
+                 silicon",
+  author =       "Brian W. Dodson",
+  journal =      "Phys. Rev. B",
+  volume =       "35",
+  number =       "6",
+  pages =        "2795--2798",
+  numpages =     "3",
+  year =         "1987",
+  month =        feb,
+  doi =          "10.1103/PhysRevB.35.2795",
+  publisher =    "American Physical Society",
+}
+
 @Article{tersoff_si2,
   title =        "New empirical approach for the structure and energy of
                  covalent systems",
 @Article{tersoff_si2,
   title =        "New empirical approach for the structure and energy of
                  covalent systems",
@@ -2394,8 +2431,8 @@ doi = {10.1063/1.106868}
   number =       "1",
   pages =        "71--81",
   URL =          "http://www.informaworld.com/10.1080/00337578608209614",
   number =       "1",
   pages =        "71--81",
   URL =          "http://www.informaworld.com/10.1080/00337578608209614",
-  notes =        "ibs, comparison with sio and sin, higher temp or
-                 time, no c redistribution",
+  notes =        "ibs, comparison with sio and sin, higher temp or time,
+                 no c redistribution",
 }
 
 @Article{reeson87,
 }
 
 @Article{reeson87,
index 5aa6fe8..1dc0df9 100644 (file)
@@ -140,8 +140,9 @@ Although the bond strength intricately depends on geometry the focus on coordina
 If the energy per bond decreases rapidly enough with increasing coordination the most stable structure will be the dimer.
 In the other extreme, if the dependence is weak, the material system will end up in a close-packed structure in order to maximize the number of bonds and likewise minimize the cohesive energy.
 This suggests the bond order to be a monotonously decreasing function with respect to coordination and the equilibrium coordination being determined by the balance of bond strength and number of bonds.
 If the energy per bond decreases rapidly enough with increasing coordination the most stable structure will be the dimer.
 In the other extreme, if the dependence is weak, the material system will end up in a close-packed structure in order to maximize the number of bonds and likewise minimize the cohesive energy.
 This suggests the bond order to be a monotonously decreasing function with respect to coordination and the equilibrium coordination being determined by the balance of bond strength and number of bonds.
+Based on pseudopotential theory the bond order term $b_{ijk}$ limitting the attractive pair interaction is of the form $b_{ijk}\propto Z^{-\delta}$ where $Z$ is the coordination number and $\delta$ a constant \cite{abell85}, which is $\frac{1}{2}$ in the seond-moment approximation within the tight binding scheme \cite{horsfield96}.
 
 
-Tersoff incorporated the concept of bond order based on pseudopotential theory \cite{abell85} in a three-body potential formalism.
+Tersoff incorporated the concept of bond order in a three-body potential formalism.
 The interatomic potential is taken to have the form
 \begin{eqnarray}
 E & = & \sum_i E_i = \frac{1}{2} \sum_{i \ne j} V_{ij} \textrm{ ,} \\
 The interatomic potential is taken to have the form
 \begin{eqnarray}
 E & = & \sum_i E_i = \frac{1}{2} \sum_{i \ne j} V_{ij} \textrm{ ,} \\
@@ -167,7 +168,7 @@ f_C(r_{ij}) = \left\{
   \end{array} \right.
 \label{eq:basics:fc}
 \end{equation}
   \end{array} \right.
 \label{eq:basics:fc}
 \end{equation}
-The function $b_{ij}$ represents a measure of the bond order, monotonically decreasing with the coordination of atoms $i$ and $j$.
+As discussed above, $b_{ij}$ represents a measure of the bond order, monotonously decreasing with the coordination of atoms $i$ and $j$.
 It is of the form:
 \begin{eqnarray}
 b_{ij} & = & \chi_{ij} (1 + \beta_i^{n_i} \zeta^{n_i}_{ij})^{-1/2n_i} \\
 It is of the form:
 \begin{eqnarray}
 b_{ij} & = & \chi_{ij} (1 + \beta_i^{n_i} \zeta^{n_i}_{ij})^{-1/2n_i} \\
@@ -183,6 +184,11 @@ This is illustrated in Figure \ref{img:tersoff_angle}.
 \caption{Angle between bonds of atoms $i,j$ and $i,k$.}
 \label{img:tersoff_angle}
 \end{figure}
 \caption{Angle between bonds of atoms $i,j$ and $i,k$.}
 \label{img:tersoff_angle}
 \end{figure}
+The angular dependence does not give a fixed minimum angle between bonds since the expression is embedded inside the bond order term.
+The relation to the above discussed bond order potential becomes obvious if $\chi=1, \beta=1, n=1, \omega=1$ and $c=0$.
+Parameters with a single subscript correspond to the parameters of the elemental system \cite{tersoff_si3,tersoff_c} while the mixed parameters are obtained by interpolation from the elemental parameters by the arithmetic or geometric mean.
+The elemental parameters were obtained by fit with respect to the cohesive energies of real and hypothetical bulk structures and the bulk modulus and bond length of the diamond structure.
+New parameters for the mixed system are $\chi$, which is used to finetune the strength of heteropolar bonds, and $\omeag$, which is set to one for the C-Si interaction but is available as a feature to permit the application of the potential to more drastically different types of atoms in the future.
 
 The force acting on atom $i$ is given by the derivative of the potential energy.
 For a three body potential ($V_{ij} \neq V{ji}$) the derivation is of the form
 
 The force acting on atom $i$ is given by the derivative of the potential energy.
 For a three body potential ($V_{ij} \neq V{ji}$) the derivation is of the form
@@ -197,10 +203,27 @@ Details of the Tersoff potential derivative are presented in appendix \ref{app:d
 
 \subsubsection{Improved analytical bond order potential}
 
 
 \subsubsection{Improved analytical bond order potential}
 
+Although the Tersoff potential is one of the most widely used potentials there are some shortcomings.
+Describing the Si interaction Tersoff was unable to find a single parameter set to describe well both, bulk and surface properties.
+Due to this and since the first approach labeled T1 \cite{tersoff_si1} turned out to be unstable \cite{dodson87}, two further parametrizations exist, T2 \cite{tersoff_si2} and T3 \cite{tersoff_si3}.
+While T2 describes well surface properties, T3 yields improved elastic constants and should be used for describing bulk properties.
+However, T3, which is used in the Si/C potential, suffers from an underestimation of the dimer binding energy.
+Similar behavior is found for the C interaction.
+
+For this reason, Erhart and Albe provide a reparametrization of the Tersoff potential based on three independently fitted potentials for the Si-Si, C-C and Si-C interaction \cite{albe_sic_pot}.
+The functional form is nearly the same like the one proposed by Tersoff.
+Differences in the energy functional and the force evaluation routine are pointed out in appendix \ref{app:d_tersoff}.
+For Si ...
 
 \subsection{Statistical ensembles}
 \label{subsection:statistical_ensembles}
 
 
 \subsection{Statistical ensembles}
 \label{subsection:statistical_ensembles}
 
+By default ... NVE
+
+However, we need to control T -> NVT
+.. and p -> NpT ...
+
+
 \section{Denstiy functional theory}
 \label{section:dft}
 
 \section{Denstiy functional theory}
 \label{section:dft}