blub
authorhackbard <hackbard@sage.physik.uni-augsburg.de>
Thu, 25 Feb 2010 17:17:57 +0000 (18:17 +0100)
committerhackbard <hackbard@sage.physik.uni-augsburg.de>
Thu, 25 Feb 2010 17:17:57 +0000 (18:17 +0100)
posic/thesis/defects.tex

index 1b53d4e..d186153 100644 (file)
@@ -687,25 +687,25 @@ Relative silicon neighbour positions:
 \end{figure}
 \begin{table}[h]
 \begin{center}
-\begin{tabular}{l c c c c c}
+\begin{tabular}{l c c c c c c}
 \hline
 \hline
- & 1 & 2 & 3 & 4 & 5 \\
+ & 1 & 2 & 3 & 4 & 5 & R\\
  \hline
- \hkl<0 0 -1> & {\color{red}-0.08} & -1.15 & {\color{red}-0.08} & 0.04 & -1.66\\
- \hkl<0 0 1> & 0.34 & 0.004 & -2.05 & 0.26 & -1.53\\
- \hkl<0 -1 0> & {\color{orange}-2.39} & -2.16 & {\color{green}-0.10} & {\color{blue}-0.27} & {\color{magenta}-1.88}\\
- \hkl<0 1 0> & {\color{cyan}-2.25} & -0.36 & {\color{cyan}-2.25} & {\color{purple}-0.12} & {\color{violet}-1.38}\\
- \hkl<-1 0 0> & {\color{orange}-2.39} & -1.90 & {\color{cyan}-2.25} & {\color{purple}-0.12} & {\color{magenta}-1.88}\\
- \hkl<1 0 0> & {\color{cyan}-2.25} & -0.17 & {\color{green}-0.10} & {\color{blue}-0.27} & {\color{violet}-1.38} \\
+ \hkl<0 0 -1> & {\color{red}-0.08} & -1.15 & {\color{red}-0.08} & 0.04 & -1.66 & -0.19\\
+ \hkl<0 0 1> & 0.34 & 0.004 & -2.05 & 0.26 & -1.53 & -\\
+ \hkl<0 -1 0> & {\color{orange}-2.39} & -2.16 & {\color{green}-0.10} & {\color{blue}-0.27} & {\color{magenta}-1.88} & -0.09\\
+ \hkl<0 1 0> & {\color{cyan}-2.25} & -0.36 & {\color{cyan}-2.25} & {\color{purple}-0.12} & {\color{violet}-1.38} & -\\
+ \hkl<-1 0 0> & {\color{orange}-2.39} & -1.90 & {\color{cyan}-2.25} & {\color{purple}-0.12} & {\color{magenta}-1.88} & -\\
+ \hkl<1 0 0> & {\color{cyan}-2.25} & -0.17 & {\color{green}-0.10} & {\color{blue}-0.27} & {\color{violet}-1.38} & -\\
  \hline
- C substitutional (C$_{\text{S}}$) & 0.26 & -0.51 & -0.93 & -0.15 & 0.49 \\
- Vacancy & -5.39 ($\rightarrow$ C$_{\text{S}}$) & -0.59 & -3.14 & -0.54 & -0.50 \\
+ C substitutional (C$_{\text{S}}$) & 0.26 & -0.51 & -0.93 & -0.15 & 0.49 & -\\
+ Vacancy & -5.39 ($\rightarrow$ C$_{\text{S}}$) & -0.59 & -3.14 & -0.54 & -0.50 & -\\
 \hline
 \hline
 \end{tabular}
 \end{center}
-\caption[Energetic results of defect combinations.]{Energetic results of defect combinations. The given energies in eV are defined by equation \eqref{eq:defects:e_of_comb}. Equivalent configurations are marked by identical colors. The first column lists the types of the second defect combined with the initial \hkl<0 0 -1> dumbbell interstitial. The position index of the second defect is given in the first row according to figure \ref{fig:defects:pos_of_comb}.}
+\caption[Energetic results of defect combinations.]{Energetic results of defect combinations. The given energies in eV are defined by equation \eqref{eq:defects:e_of_comb}. Equivalent configurations are marked by identical colors. The first column lists the types of the second defect combined with the initial \hkl<0 0 -1> dumbbell interstitial. The position index of the second defect is given in the first row according to figure \ref{fig:defects:pos_of_comb}. R is the position located at $\frac{a_{\text{Si}}}{2}\hkl<3 2 3>$ relative to the initial defect, which is the maximum realizable distance due to periodic boundary conditions.}
 \label{tab:defects:e_of_comb}
 \end{table}
 Figure \ref{fig:defects:pos_of_comb} shows the initial \hkl<0 0 -1> dumbbell interstitial defect and the positions of next neighboured silicon atoms used for the second defect.
@@ -721,12 +721,13 @@ E_{\text{f}}^{\text{2nd defect}}
 with $E_{\text{f}}^{\text{defect combination}}$ being the formation energy of the defect combination, $E_{\text{f}}^{\text{C \hkl<0 0 -1> dumbbell}}$ being the formation energy of the C \hkl<0 0 -1> dumbbell interstitial defect and $E_{\text{f}}^{\text{2nd defect}}$ being the formation energy of the second defect.
 For defects far away from each other the formation energy of the defect combination should approximately become the sum of the formation energies of the individual defects without an interaction resulting in $E_{\text{b}}=0$.
 Thus, $E_{\text{b}}$ can be best thought of a binding energy, which is required to bring the defects to infinite separation.
-In fact, further \hkl<0 0 -1> dumbbell interstitials created at position $\frac{a_{\text{Si}}}{2}\hkl<3 2 3>$ ($\approx 10.2$ \AA) and $\frac{a_{\text{Si}}}{2}\hkl<2 3 2>$ ($\approx 12.8$ \AA) relative to the initial one result in energies as low as -0.19 eV and -0.12 eV.
+In fact, a \hkl<0 0 -1> dumbbell interstitial created at position R with a distance of $\frac{a_{\text{Si}}}{2}\hkl<3 2 3>$ ($\approx 12.8$ \AA) from the initial one results in an energy as low as -0.19 eV.
 There is still a low interaction which is due to the equal orientation of the defects.
-By changing the orientation of the second dumbbell interstitial to the \hkl<0 -1 0>-type the interaction is even mor reduced, which results in an energy of $E_{\text{b}}=...\text{ eV}$ for a distance of $\frac{a_{\text{Si}}}{2}\hkl<2 3 2>$, which is the maximum that can be reached due to periodic boundary conditions.
-Configurations wih energies greater than zero are energetically unfavorable and expose a repulsive interaction.
+By changing the orientation of the second dumbbell interstitial to the ...-type the interaction is even mor reduced resulting in an energy of $E_{\text{b}}=...\text{ eV}$ for a distance, which is the maximum that can be realized due to periodic boundary conditions.
+The energies obtained in the R column of table \ref{eq:defects:e_of_comb} are used as a reference to identify, whether less distanced defects of the same type are favorable or unfavorable compared to the far-off located defect.
+Configurations wih energies greater than zero or the reference value are energetically unfavorable and expose a repulsive interaction.
 These configurations are unlikely to arise or to persist for non-zero temperatures.
-Energies below zero indicate configurations favored compared to configurations in which these point defects are separated far away from each other.
+Energies below zero and below the reference value indicate configurations favored compared to configurations in which these point defects are separated far away from each other.
 
 Investigating the first part of table \ref{tab:defects:e_of_comb}, namely the combinations with another \hkl<1 0 0>-type interstitial, most of the combinations result in energies below zero.
 Surprisingly the most favorable configurations are the ones with the second defect created at the very next silicon neighbour and a change in orientation compared to the initial one.
@@ -755,7 +756,7 @@ The displayed configurations are realized by creating a \hkl<1 0 0> (a)) and \hk
 Structure \ref{fig:defects:comb_db_01} b) is the energetically most favorable configuration.
 After relaxation the initial configuration is still evident.
 As expected by the initialization conditions the two carbon atoms form a bond.
-This bond has a length of 1.38 \AA close to the nex neighbour distance in diamond or graphite, which is approximately 1.54 \AA.
+This bond has a length of 1.38 \AA{} close to the nex neighbour distance in diamond or graphite, which is approximately 1.54 \AA.
 The minimum of binding energy observed for this configuration suggests prefered C clustering as a competing mechnism to the C-Si dumbbell interstitial agglomeration inevitable for the SiC precipitation.
 Todo: Activation energy to obtain a configuration of separated C atoms again or vice versa to obtain this configuration from separated C confs?
 However, for the second most favorable configuration, presented in figure \ref{fig:defects:comb_db_01} a), the amount of possibilities for this configuration is twice as high.