From: hackbard Date: Mon, 18 Feb 2008 23:37:04 +0000 (+0100) Subject: fixes ... X-Git-Url: https://hackdaworld.org/gitweb/?p=lectures%2Flatex.git;a=commitdiff_plain;h=7324e1b27ab305d480e7c00917d371a4c6a0c63f fixes ... --- diff --git a/posic/talks/dpg_2008.tex b/posic/talks/dpg_2008.tex index d156126..d7e97e8 100644 --- a/posic/talks/dpg_2008.tex +++ b/posic/talks/dpg_2008.tex @@ -33,7 +33,9 @@ \begin{document} \extraslideheight{10in} -\slideframe{plain} +\slideframe{none} + +\pagestyle{empty} % specify width and height \slidewidth 27.7cm @@ -41,7 +43,7 @@ % shift it into visual area properly \def\slideleftmargin{3.3cm} -\def\slidetopmargin{0.0cm} +\def\slidetopmargin{0.6cm} \newcommand{\ham}{\mathcal{H}} \newcommand{\pot}{\mathcal{V}} @@ -135,7 +137,7 @@ \item Integrator, potential, ensemble control \item Simulation sequence \end{itemize} - \item Results gained by simulation + \item Simulation results \begin{itemize} \item Interstitials in silicon \item SiC-precipitation experiments @@ -152,14 +154,39 @@ Motivation / Introduction } - Why C in Si? + \vspace{16pt} + + Reasons for investigating C in Si: \begin{itemize} \item 3C-SiC wide band gap semiconductor formation - \item Strained Si + \item Strained Si (no precipitation wanted!) \end{itemize} - + \vspace{16pt} + + Si / 3C-SiC facts: + + \begin{minipage}{8cm} + \begin{itemize} + \item Unit cell: + \begin{itemize} + \item {\color{yellow}fcc} $+$ + \item {\color{gray}fcc shifted $1/4$ of volume diagonal} + \end{itemize} + \item Lattice constants: $4a_{Si}\approx5a_{SiC}$ + \item Silicon density: + \[ + \frac{n_{SiC}}{n_{Si}}= + \frac{4/a_{SiC}^3}{8/a_{Si}^3}= + \frac{5^3}{2\cdot4^3}={\color{cyan}97,66}\,\% + \] + \end{itemize} + \end{minipage} + \hspace{8pt} + \begin{minipage}{4cm} + \includegraphics[width=4cm]{sic_unit_cell.eps} + \end{minipage} \end{slide} @@ -203,16 +230,13 @@ Precipitation of 3C-SiC + Creation of interstitials\\ \end{minipage} - \begin{center} - \[ - \textrm{Silicon density: } \quad - 5a_{SiC}=4a_{Si} \quad \Rightarrow \quad - \frac{n_{SiC}}{n_{Si}}=\frac{\frac{4}{a_{SiC}^3}}{\frac{8}{a_{Si}^3}}= - \frac{5^3}{2\cdot4^3}={\color{cyan}97,66}\,\% - \] - \end{center} + \vspace{12pt} - Experimentally observed minimal diameter of precipitation: 4 - 5 nm + Experimentally observed: + \begin{itemize} + \item Minimal diameter of precipitation: 4 - 5 nm + \item (hkl)-planes identical for Si and SiC + \end{itemize} \end{slide} @@ -222,20 +246,22 @@ Simulation details } + \vspace{12pt} + MD basics: \begin{itemize} \item Microscopic description of N particle system \item Analytical interaction potential \item Hamilton's equations of motion as propagation rule\\ - in 6N-dimemnsional phase space + in 6N-dimensional phase space \item Observables obtained by time average \end{itemize} - \vspace{4pt} + \vspace{12pt} Application details: \begin{itemize} - \item Integrator: velocity verlet, timestep: $1\, fs$ + \item Integrator: Velocity Verlet, timestep: $1\, fs$ \item Ensemble control: NVT, Berendsen thermostat, $\tau=100.0$ \item Potential: Tersoff-like bond order potential\\ \[ @@ -247,6 +273,10 @@ \end{center} \end{itemize} + \begin{picture}(0,0)(-240,-70) + \includegraphics[width=5cm]{tersoff_angle.eps} + \end{picture} + \end{slide} \begin{slide} @@ -269,7 +299,7 @@ \begin{itemize} \item $(0,0,0)$ $\rightarrow$ {\color{red}tetrahedral} \item $(-1/8,-1/8,1/8)$ $\rightarrow$ {\color{green}hexagonal} - \item $(-1/8,-1/8,-1/4)$, $(-1/4,-1/4,-1/4)$ + \item $(-1/8,-1/8,-1/4)$, $(-1/4,-1/4,-1/4)$\\ $\rightarrow$ {\color{yellow}110 dumbbell} \item random positions (critical distance check) \end{itemize} @@ -277,7 +307,7 @@ \item Optional heating-up \end{itemize} - \begin{picture}(0,0)(-210,-85) + \begin{picture}(0,0)(-210,-45) \includegraphics[width=6cm]{unit_cell.eps} \end{picture}