From d0154aa01d2e8c73168cec861d371c501b860eaf Mon Sep 17 00:00:00 2001 From: hackbard Date: Tue, 23 May 2006 15:36:26 +0000 Subject: [PATCH] initial poster checkin --- nlsop/poster/nlsop_ibmm2006.tex | 357 ++++++++++++++++++++++++++++++++ 1 file changed, 357 insertions(+) create mode 100644 nlsop/poster/nlsop_ibmm2006.tex diff --git a/nlsop/poster/nlsop_ibmm2006.tex b/nlsop/poster/nlsop_ibmm2006.tex new file mode 100644 index 0000000..324c6b5 --- /dev/null +++ b/nlsop/poster/nlsop_ibmm2006.tex @@ -0,0 +1,357 @@ +\documentclass[10pt]{scrartcl} + +% howto ... +% +% resize to A0 (900 x 1100 mm) full poster size +% or A4 or Letter size +% +% resize factor: +% 2*sqrt(2) = 2.828 (for A0) +% 2 = 2.00 (for A1) +% +% +% format definition: +% +% special format, scaled by 2.82 -> A0 +% +\def\breite{390mm} +\def\hoehe{319.2mm} +\def\anzspalten{4} +% +% A3 landscape +% +%\def\breite{420mm} +%\def\hoehe{297mm} +%\def\anzspalten{4} +% +% A3 portrait +% +%\def\breite{297mm} +%\def\hoehe{420mm} +%\def\anzspalten{3} +% +% A4 portrait +% +%\def\breite{210mm} +%\def\hoehe{297mm} +%\def\anzspalten{2} +% +% +% +% scaling procedure: +% ./poster_resize poster.ps S +% +% european sizes: +% A3: 29.73 x 42.04 cm +% A1: 59.5 x 84.1 cm +% A0: 84.1 x 118.9 cm +% + +% packages: +% +\usepackage{palatino} +\usepackage[latin1]{inputenc} +\usepackage{epsf} +\usepackage{graphicx,psfrag,color,pstricks,pst-grad} +\graphicspath{{../img/}} +\usepackage{amsmath,amssymb} +\usepackage{latexsym} +\usepackage{calc} +\usepackage{multicol} +\usepackage[german]{babel} + +% numbers, lengths and boxes: +% +\newsavebox{\dummybox} +\newsavebox{\spalten} +% +\newlength{\bgwidth}\newlength{\bgheight} +\setlength\bgheight{\hoehe} \addtolength\bgheight{-1mm} +\setlength\bgwidth{\breite} \addtolength\bgwidth{-1mm} +% +\newlength{\kastenwidth} +% +\setlength\paperheight{\hoehe} +\setlength\paperwidth{\breite} +\special{papersize=\breite,\hoehe} +% +\topmargin -1in +\marginparsep0mm +\marginparwidth0mm +\headheight0mm +\headsep0mm +% +\setlength{\oddsidemargin}{-2.44cm} +\addtolength{\topmargin}{-3mm} +\textwidth\paperwidth +\textheight\paperheight +% +\parindent0cm +\parskip1.5ex plus0.5ex minus 0.5ex +\pagestyle{empty} +% +\definecolor{recoilcolor}{rgb}{1,0,0} +\definecolor{occolor}{rgb}{0,1,0} +\definecolor{pink}{rgb}{0,1,1} +% +\def\UberStil{\normalfont\sffamily\bfseries\large} +\def\UnterStil{\normalfont\sffamily\small} +\def\LabelStil{\normalfont\sffamily\tiny} +\def\LegStil{\normalfont\sffamily\tiny} + +% commands: +% +\definecolor{JG}{rgb}{0.1,0.9,0.3} +% +\newenvironment{kasten}{% + \begin{lrbox}{\dummybox}% + \begin{minipage}{0.96\linewidth}}% + {\end{minipage}% + \end{lrbox}% +\raisebox{-\depth}{\psshadowbox[framesep=1em]{\usebox{\dummybox}}}\\[0.5em]} +% +\newenvironment{spalte}{% + \setlength\kastenwidth{1.2\textwidth} + \divide\kastenwidth by \anzspalten + \begin{minipage}[t]{\kastenwidth}} + {\end{minipage}\hfill} +% +\renewcommand{\emph}[1]{{\color{red}\textbf{#1}}} +% +\def\op#1{\hat{#1}} + +% +% the document begins ... +% +\begin{document} + +% background +{\newrgbcolor{gradbegin}{0.1 0.1 0.1}% + \newrgbcolor{gradend}{1 1 1}% + \psframe[fillstyle=gradient,gradend=gradend,% + gradbegin=gradbegin,gradmidpoint=0.5](\bgwidth,-\bgheight)% +} + +% header +\vfill +\hfill +\psshadowbox{\makebox[0.95\textwidth]{% + \hfill + \parbox[c]{0.1\linewidth}{\includegraphics[height=4.5cm]{uni-logo.eps}} + \parbox[c]{0.7\linewidth}{% + \begin{center} + \textbf{\Huge{Monte Carlo simulation study of a + selforganization process\\ + leading to ordered precipitate structures} + }\\[0.7em] + \textsc{\LARGE \underline{F. Zirkelbach}, M. H"aberlen, + J. K. N. Lindner, B. Stritzker + }\\[0.7em] + {\large Institut f"ur Physik, Universit"at Augsburg, + D-86135 Augsburg, Germany + } + \end{center} + } + \parbox[c]{0.1\linewidth}{% + \includegraphics[height=4.1cm]{Lehrstuhl-Logo.eps} + } + \hfill +}} +\hfill\mbox{}\\[1.cm] + +%\vspace*{1.3cm} + +% content, let's rock the columns +\begin{lrbox}{\spalten} + \parbox[t][\textheight]{1.3\textwidth}{% + \vspace*{0.2cm} + \hfill +% first column +\begin{spalte} + \begin{kasten} + \begin{center} + {\large{\color{blue}\underline{ABSTRACT}}} + \end{center} +High-dose ion implantation into solids usually leads to a disordered distribution of defects or precipitates with variable sizes. +However materials exist for which high-dose ion irradiation at certain conditions results in periodically arranged, self-organized, nanometric amorphous inclusions. +This has been observed for a number of ion/target combinations \cite{ommen,specht,ishimaru} which all have in common a largely reduced density of host atoms of the amorphous phase compared to the crystalline host lattice. +A simple model explaining the phenomenon is introduced and realized in a Monte Carlo simulation code, which focuses on high dose carbon implantation into silicon. +The simulation is able to reproduce the depth distribution observed by TEM and RBS. +While first versions of the simulation \cite{me1,me2} just covered a limited depth region of the target in which the selforganization is observed, the new version of this simulation code presented here is able to model the whole depth region affected by the irradiation process, as can be seen in chapter 4. +Based on simulation results a recipe is proposed for producing broad distributions of lamellar, ordered structures which, according to recent studies \cite{wong}, are the starting point for materials with high photoluminescence. + \end{kasten} + + \begin{kasten} + + \section*{1\hspace{0.1cm}{\color{blue}Experimental observations}} + + \subsection*{1.1{\color{blue} Amorphous inclusions}} + \begin{center} + \includegraphics[width=11cm]{k393abild1_e.eps} + \end{center} + Cross section TEM image:\\ + $180 \, keV$ $C^+ \rightarrow Si$, + $T=150 \, ^{\circ} \mathrm{C}$, + Dose: $4.3 \times 10^{17} \, cm^{-2}$\\ + black/white: crystalline/amorphous material\\ + L: amorphous lamellae, S: spherical amorphous inclusions + + \subsection*{1.2{\color{blue} Carbon distribution}} + \begin{center} + \includegraphics[width=11cm]{eftem.eps} + \end{center} + Brightfield TEM and respective EFTEM image:\\ + $180 \, keV$ $C^+ \rightarrow Si$, + $T=200 \, ^{\circ} \mathrm{C}$, + Dose: $4.3 \times 10^{17} \, cm^{-2}$\\ + yellow/blue: high/low concentrations of carbon + + \end{kasten} +\end{spalte} +% second column +\begin{spalte} + \begin{kasten} + \section*{2\hspace{0.1cm}{\color{blue}Model}} + + \begin{center} + \includegraphics[width=11cm]{modell_ng_e.eps} + \end{center} + \begin{itemize} +\item supersaturation of $C$ in $c-Si$\\ + $\rightarrow$ {\bf carbon induced} nucleation of spherical + $SiC_x$-precipitates +\item high interfacial energy between $3C-SiC$ and $c-Si$\\ + $\rightarrow$ {\bf amourphous} precipitates +\item $20 - 30\,\%$ lower silicon density of $a-SiC_x$ compared to $c-Si$\\ + $\rightarrow$ {\bf lateral strain} (black arrows) +\item reduction of the carbon supersaturation in $c-Si$\\ + $\rightarrow$ {\bf carbon diffusion} into amorphous volumina + (white arrows) +\item lateral strain (vertical component relaxating)\\ + $\rightarrow$ {\bf strain induced} lateral amorphization + \end{itemize} + \end{kasten} + + \begin{kasten} + \section*{3\hspace{0.1cm}{\color{blue}Simulation}} + + \subsection*{3.1{\color{blue} Discretization of the target}} + \begin{center} + \includegraphics[width=10cm]{gitter_e.eps} + \end{center} + + \subsection*{3.2 {\color{blue} Simulation algorithm}} + + \subsubsection*{3.2.1 Amorphization/Recrystallization} + \begin{itemize} + \item random numbers according to the nuclear + energy loss to determine the volume hit + by an impinging ion + \item compute local probability for + amorphization:\\ +\[ + p_{c \rightarrow a}(\vec{r}) = {\color{green} p_b} + {\color{blue} p_c c_C(\vec{r})} + {\color{red} \sum_{\textrm{amorphous neighbours}} \frac{p_s c_C(\vec{r'})}{(r-r')^2}} +\] + and recrystallization: +\[ + p_{a \rightarrow c}(\vec r) = (1 - p_{c \rightarrow a}(\vec r)) \Big(1 - \frac{\sum_{direct \, neighbours} \delta (\vec{r'})}{6} \Big) \, \textrm{,} +\] +\[ +\delta (\vec r) = \left\{ +\begin{array}{ll} + 1 & \textrm{volume at position $\vec r$ amorphous} \\ + 0 & \textrm{otherwise} \\ +\end{array} +\right. +\] + \item loop for the mean amount of hits by the + ion + \end{itemize} +Three contributions to the amorphization process controlled by: +\begin{itemize} + \item {\color{green} $p_b$} normal 'ballistic' amorphization + \item {\color{blue} $p_c$} carbon induced amorphization + \item {\color{red} $p_s$} stress enhanced amorphization +\end{itemize} + \end{kasten} +\end{spalte} +% third column +\begin{spalte} + \begin{kasten} + \subsubsection*{3.2.2 Carbon incorporation} + \begin{itemize} + \item random numbers according to the + implantation profile to determine the + incorporation volume + \item increase the amount of carbon atoms in + that volume + \end{itemize} + \subsubsection*{3.2.3 Diffusion/Sputtering} + \end{kasten} + + \begin{kasten} + \section*{4 \hspace{0.1cm} {\color{blue}Simulation results}} + \begin{center} + foo + \end{center} + \end{kasten} + bar + \vspace{0.5cm} + foobar +\end{spalte} +% fourth column +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% + \begin{spalte} + \begin{kasten} + \section*{5 \hspace{0.1cm} {\color{red}Fifth Section}} + \begin{center} + \includegraphics[width=10cm]{blank.ps} + \end{center} + \end{kasten} + +\vspace{0.5cm} + \begin{kasten} + \section*{6 \hspace{0.1cm} {\color{red} \underline{Conclusions}}} + \begin{itemize} + \item + + \item + + \item + + \item + + \end{itemize} + \end{kasten} + +\vspace{0.5cm} + \begin{kasten} + + {\small + \begin{thebibliography}{9} + \bibitem{ommen} A. H. van Ommen, + Nucl. Instr. and Meth. B 39 (1989) 194. + \bibitem{specht} E. D. Specht, D. A. Walko, S. J. Zinkle, + Nucl. Instr. and Meth. B 84 (2000) 390. + \bibitem{ishimaru} M. Ishimaru, R. M. Dickerson, K. E. Sickafus, + Nucl. Instr. and Meth. B 166-167 (2000) 390. + \bibitem{me1} F. Zirkelbach, M. H"aberlen, J. K. N. Lindner, + B. Stritzker, + Comp. Mater. Sci. 33 (2005) 310. + \bibitem{me2} F. Zirkelbach, M. H"aberlen, J. K. N. Lindner, + B. Stritzker, + Nucl. Instr. and Meth. B 242 (2006) 679. + \bibitem{wong} Dihu Chen, Z. M. Liao, L. Wang, H. Z. Wang, Fuli Zhao, + W. Y. Cheung, S. P. Wong, + Opt. Mater. 23 (2003) 65. Opt. Mater. 23 (2003) 65. + \end{thebibliography} + } + \end{kasten} + \end{spalte} + } + \end{lrbox} +\resizebox*{0.98\textwidth}{!}{% + \usebox{\spalten}}\hfill\mbox{}\vfill +\end{document} + + -- 2.20.1