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Within the scheme of the Large-scale Atomic Effective Pseudopotential Program, the Schrödinger
equation of an electronic system is solved within an effective single-particle approach. Although
not limited to, it focuses on the recently introduced atomic effective pseudopotentials derived from
screened local effective crystal potentials as obtained from self-consistent density functional theory
calculations. The problem can be solved in both, real (real space grid) and reciprocal space (plane
wave basis functions). Following the idea of atomic effective pseudopotentials, the density, and hence
a self-consistent cycle, is not required and not implemented. An iterative solver is implemented to
deliver the eigenstates close to a selected reference energy, e.g. around the band gap of a semi-
conductor. This approach is particularly well suited for theoretical investigations of the electronic
structure of semiconductor nanostructures and we demonstrate linear scaling with the system size
up to around one hundred thousand atoms on a single standard compute node. Moreover, a novel
and efficient real space treatment of spin-orbit coupling within the pseudopotential framework is
proposed in this work allowing for a fully relativistic description.
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I. INTRODUCTION

Semiconductor nanostructures exhibit highly attrac-
tive and technologically relevant electronic and optical
properties that depend on their composition, structure,
size and shape. The increasing ability to control these
parameters, as well as experimental achievements in the
characterization of these nanostructures, enable discov-
eries of increasingly complex behavior. These include
the appearance of different kinds of excitons1–3, Auger
processes4 as well as quantum entanglement5, which
make these semiconductor nanostructures ideal candi-
dates for functionalized solid-state materials in the field
of optoelectronics and quantum information. Moreover,
semiconductor quantum wells constitute the first struc-
tural class of materials, for which conducting edge states
in bulk insulators were predicted6 to be protected by
time-reversal-invariance and subsequently observed ex-
perimentally7, establishing the emerging research field of
topological insulators8,9.

While these structures with dimensions of several up
to hundreds of nanometers are considered small, they do
consist of up to hundred thousands of atoms. Theoretical
methods describing the electronic and optical properties
of semiconductor nanostructures must be capable of ad-
dressing this large number of atoms including the treat-
ment of excitations at a many-body level, as well as rel-
ativistic spin-orbit effects, the latter being, for instance,
responsible for the protected metallic surface states of
topological insulators or the polarization properties of
optical emission.

The currently existing approaches applied for the cal-
culation of the excited state properties of nanostructures
ranges from ab initio descriptions to rather empirical
methods with limited predictive capabilities. Histori-

cally, continuum approaches where the atomic fast oscil-
lating potential is replaced by a smooth (e.g. parabolic)
potential, as in the k · p method, have been applied to
nanostructures revealing interesting trends and deliver-
ing an initial basic understanding of confinement effects.
Recent and ongoing theoretical efforts are aimed at the
development of affordable atomistic descriptions, which
naturally capture the correct atomistic symmetry and
include all the relevant effects at the onset. Eventually,
the atomistic description will make the continuum mod-
els obsolete. The mapping of the quantitative results
onto simple effective Hamiltonians for the purpose of in-
terpretation, is a mere postprocessing of the data.

Existing atomistic methods can be cast into differ-
ent groups. (i) First-principles methods such as time-
dependent density functional theory, GW and Bethe-
Salpeter provide an accurate atomistic description but
are limited to up to a few hundreds of atoms. (ii) Empir-
ical tight-binding methods can easily address several mil-
lions of atoms10–13 but lack single particle wave functions,
which are needed in the subsequent treatment of excita-
tions. Worthwhile theoretical effects are presently under-
taken to address this issue. (iii) The empirical pseudopo-
tential method14,15 (EPM) has been generalized16–18 to
be able to address nanostructures with millions of atoms
using appropriate basis sets19 and offered an excellent
basis for the calculation of excitonic wave functions via
configuration interaction18,20. (iv) Recently, a new gen-
eration of the EPM was introduced21, which removes
its empirical character by using an analytic connection
between results of density functional theory (DFT) cal-
culations on elongated and slightly deformed supercells
and the derived atomic effective pseudopotentiall (AEP).
This procedure provides access to the long-range interac-
tion, which was lacking in the original EPM and offers an



2

automatic pseudopotential generation leading to unique
AEPs.
The present work introduces the Large-scale Atomic

Effective Pseudopotential Program (latepp) developed
to efficiently solve the electronic eigenvalue prob-
lems utilizing AEPs. The formalism underlying the
AEPs21 involves non-local angular momentum depen-
dent pseudopotentials that are implement following the
Kleinmann-Byland separable formulation in reciprocal
and in real space. The eigensolver is distinct from the
case of DFT since an inner eigenvalue problem is solved.
For the spin-orbit treatment, a new and efficient formula-
tion was developed in the present work and implemented
and tested against the implementation used in the estab-
lished DFT code abinit

22. The kinetic energy operator
is implemented in reciprocal space, as in standard plane
wave codes, as well as in real space realized by a finite
difference scheme. The latter implementation leads to a
fully real-space treatment of the problem. The obtained
single-particle wavefunctions can be used in a subsequent
configuration interaction approach18 to obtain the many-
body effects, which, however, is beyond the scope of the
present method.
In the first part of this manuscript, a short overview

of the capabilities as well as a summary of the basic con-
cepts of AEPs is presented. This is followed by a more
detailed description of the underlying code that solves
the Schrödinger equation. Finally, the method is illus-
trated and the performance is tested by applying it to a
GaAs quantum dot embedded in AlAs for a total number
of 97,336 atoms. Calculations on bulk GaAs are used to
illustrate the capabilities and accuracy of the spin-orbit
treatment.

II. METHODOLOGY

A. Capabilities

The latepp code solves the Schrödinger equation of
an electronic system within an effective single-particle
approach. It is aimed at utilizing the recently presented
AEPs21 derived from ab initio pseudopotential calcula-
tions. Within the AEP scheme, the self-consistent up-
date of the density, as performed in a DFT calculation,
is not required. This allows to focus on a restricted
selection of relevant eigenstates close to a reference en-
ergy, which must be known or guessed based on previous
findings. In contrast to DFT, which computes all occu-
pied states, this method does not provide total energies
and forces, equilibrated structures have to be assumed
or computed by efficient valence force field models. Like-
wise, although exhibitting a high transferability, struc-
tures that involve large charge transfer compared to the
structure used for the generation of the AEP are not
guaranteed to be computed accurately. Keeping these
limitations in mind, however, latepp is capable of effi-
ciently treating large structures since the eigenstates of

the Hamiltonian need to be solved only once. Three dif-
ferent solvers are implemented for this task. The iterative
Jacobi-Davidson23–27 solver is applied to the folded spec-
trum28 Hamiltonian and the Arnoldi restart algorithm as
implemented in ARPACK29,30 to deliver eigenstates close
to a target reference energy. In addition, a direct diago-
nalization solver is integrated, which requires the explicit
construction and storage of the full Hamiltonian and de-
livers all the eigenstates, in the case this is required.
The non-local contribution of the potential to recon-

struct the full crystal potential of the self-consistent ab
initio pseudopotential is treated in a fully separable form
as suggested by Kleinman and Bylander31 and can be
evaluated in reciprocal or in real space.
Not a new idea in the field of electronic structure cal-

culations32–35, the kinetic energy, which is diagonal in
reciprocal space, can likewise be calculated in real space
by a finite difference approach, which leads to a fully
real-space treatment scaling linearly with the number of
atoms. For transformations between reciprocal and real
space, the fast Fourier transformation (FFT) as imple-
mented in FFTW36,37 or FFTE38 can be selected.
Spin-orbit interaction can be included within a real or

reciprocal space treatment using the iterative or direct
diagonalization scheme.

B. Atomic effective pseudopotentials

As recently introduced21, AEPs are constructed by ex-
tracting the local part of the self-consistent effective crys-
tal potentials V loc,eff(r) from DFT calculations, which
include the local part of the pseudopotential as well as
the Hartree and exchange correlation (XC) contributions.
This can be transformed to reciprocal space according to:

V loc,eff(G) =
1

Ωc

∫

Ωc

V loc,eff(r)e−iG·rd3r , (1)

with Ωc being the volume of the supercell. By rewriting
the crystal potential in (1) as a sum over atom centered
pseudopotentials

V loc,eff(r) =

Nspecies∑

α

Nα∑

n

vα(r − τα,n) (2)

and substituting r = r′+τα,n, the total reciprocal space
potential can be expressed as a Fourier sum

V loc,eff(G) =
1

Ωc

Nspecies∑

α

Nα∑

n

e−iG·τα,nvα(G) (3)

of atomic reciprocal space potentials

vα(G) =

∫

∞

vα(r)e
−iG·rd3r . (4)

A detailed description of the analytic connection be-
tween the DFT results obtained for elongated and slightly



3

deformed supercells and the AEPs vα(|G|) is given in
Ref. 21, along with benchmark tests of their accuracy.
The AEPs are available for over twenty binary semicon-
ductors in a tabulated form39 on a dense grid in reciprocal
space. These files are read by latepp.

C. Solving the Schrödinger equation

The latepp code solves the Schrödinger equation of
the electronic problem (in atomic units)

(
−∇

2

2
+ VL(r) + V̂NL + V̂SO

)
ψi,k(r) = ǫi,kψi,k(r) .

(5)

Here, VL(r) is the local effective pseudopotential, V̂NL

represents the non-local part of the pseudopotential, V̂SO
is the spin-orbit contribution and the first term corre-
sponds to the kinetic energy.

1. Basis sets

The wavefunctions are represented either in a plane
wave basis,

ψi,k(r) =
∑

G
|k+G|<Gcut

ci,k e
i(k+G)·r (6)

truncated at a certain cut-off energy Ecut =
1
2G

2
cut; or on

a regular real space grid.

2. Solvers and representations

The evaluation of the different parts of the Hamilto-
nian depends on the selected solver as well as on the
representation chosen for the wavefunctions. The possi-
bilities provided by latepp are shortly summarized in
the following.
The wavefunctions are represented on a regular grid,

either in real or reciprocal space, both linked via Fourier
transforms. If the full Hamiltonian is diagonalized di-
rectly, which is only possible for small systems, the wave-
functions as well as the non-local and spin-orbit poten-
tials are exclusively represented and evaluated in recip-
rocal space.
For larger systems, the iterative Jacobi-Davidson23–27

solver or Arnoldi restart29,30 algorithm can be used.
These algorithms iteratively approach the solution based
on a repeated operation of the operator on the wavefunc-
tion. The following discussions will be restricted to the
Arnoldi method since it turned out to be more efficient
than the Jacobi-Davidson solver and has established it-
self as the standard solver.
Within the iterative treatment, V̂NL can be imple-

mented in the fully separable formulation proposed by

Kleinman and Bylander31 in reciprocal- or in real-space,
whereas the inclusion of spin-orbit interaction is re-
stricted to the real space treatment.

3. Kinetic energy

In reciprocal space, the matrix elements of the kinetic
energy operator T̂ are diagonal and easily obtained by

TG,G′(k) = 〈k +G|T̂ |k +G′〉 = δG,G′

1

2
(k +G)2 . (7)

Within an iterative treatment, the kinetic energy is cal-
culated by the sum of the product of these diagonal ele-
ments and the coefficients of the wavefunction.
If the remaining parts of the Hamiltonian are evaluated

in real space, Fourier transforms of the wavefunction into
reciprocal space and back are needed. The scaling is,
thus, determined by the N log(N) scaling of the FFT
algorithm, if N is the grid size, which is proportional to
the number of atoms in the system. The kinetic energy
can likewise be calculated directly in real space by a finite
difference scheme:

d2

dx2
ψ

∣∣∣∣
(i,j,k)

≈
O/2∑

l=−O/2

cd=2
l,0 ψ(i+ l, j, k)/h2x +

O/2∑

l=−O/2

cd=2
l,0 ψ(i, j + l, k)/h2y +

O/2∑

l=−O/2

cd=2
l,0 ψ(i, j, k + l)/h2z , (8)

for any even order O with the optimal weights cdl,m be-

ing determined by an algorithm given by Fornberg40,41,
and hx,y,z being the grid spacings. This preserves linear
scaling and becomes advantageous for large systems, as
will be shown subsequently.

4. Local potential

The AEPs are tabulated in reciprocal space39. The
corresponding matrix elements are given by

VL
G,G′

(k) = 〈k +G|VL|k +G′〉

=
1

Ωc

∫
VL(r)e

i(G−G′)·rd3r

= VL(G−G′) (9)

and computed according to equation (3). Thus, for fully
converged results with respect to the chosen plane wave
cut-off energy, the grid must be chosen large enough
(2Gcut in each direction) to include all possible reciprocal
lattice vectors G −G′. However, in most cases, smaller
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grid sizes have been found to give accurate results, which
is demonstrated in section III B.
For surfaces, interfaces or for an alloy, weights are in-

troduced to account for the difference in the chemical en-
vironment compared to the binary or pure bulk system.
Including the weights wα,n, the sum in equation (3) is
adjusted to read

V loc,eff(G) =
1

Ωc

Nspecies∑

α

vα(G)

Nα∑

n

e−iG·τα,nwα,n . (10)

Here, Nspecies specifies the number of different types of
atoms that exist in the system in its various occuring en-
vironments, i.e. it corresponds to the number of utilized
AEPs. For instance, As atoms surrounded by Ga atoms
constitute a different species than As atoms surrounded
by Al atoms. In the case of surfaces, interfaces or alloys,
an atom, which has different types of next neighbors is
represented by more than one such atom species. The re-
spective contributions to the local potential are modified
by weights determined by

wα,n =
nα,n
4

(for tetrahedrally coordinated materials),

(11)
with nα,n being the number of next neighbors of type α.
For evaluation in real space, the potential is initially

transformed and stored on a real space grid. This is like-
wise done for the iterative methods in reciprocal space.
In this way, the O(N2) complexity due to the matrix-
vector multiplication in reciprocal space is reduced to
O(N log(N)) complexity governed by the Fourier trans-
forms of the wavefunctions, which are then multiplied
with the local potential operator that is diagonal in real
space.

5. Nonlocal potential

The non-local part of the potential is given by

V̂NL =
∑

l,m

|l,m〉δVl(r)〈l,m| , (12)

with the spherical harmonics |l,m〉 and δVl(r) being the
difference of the l-dependent pseudopotential Vl(r) and
the selected local part Vloc(r). The local part of the pseu-
dopotential contains the long-ranged part of the poten-
tial, which leads to short-ranged non-local operators. In
this way, δVl(r) is only non-zero within a sphere of a
certain radius.
latepp supports the semi-local form in equation (12),

which is non-local only in the angular part and requires
a radial integration

〈q|V̂NL|q′〉 = 4π

Ωc

∑

l

(2l+1)Pl(q̂·q̂′)

∫
r2jl(qr)δVl(r)jl(q

′r) dr

(13)

with the spherical Bessel functions jl, the Legendre poly-
nomials Pl, q = k +G and q′ = k +G′.

For larger system sizes, the separable formulation of
Kleinman and Bylander31 (KB)

V̂ KB
NL =

∑

l,m

|χKB
lm 〉EKB

l 〈χKB
lm | (14)

with the KB eigenvalue

EKB
l =

〈ulδVl|δVlul〉
〈ul|δVl|ul〉

(15)

and the normalized KB projectors

|χKB
lm 〉 =

|δVlφlm〉
〈ulδVl|δVlul〉1/2

(16)

can be used. Here, φlm is the atomic pseudopotential
wavefunction and ul its radial part multiplied with the
radius. The radial parts as well as the respective poten-
tials δVl of the pseudopotential wavefunctions are stored
on a real space grid in a file and are constructed accord-
ing to the procedures by Hamann, Schlüter and Chiang42

or Troullier and Martins43.
To calculate EKB

l , the integrals of equation (15) are
evaluated on the one dimensional real space grid of the
pseudopotential. The same grid is used to obtain the
radial part of the KB projectors

uKB
l (q) =

∫

r

jl(qr)δVl(r)ul(r)r dr , (17)

on a likewise one dimensional, equally spaced auxiliary
grid consisting of 600 points up to the cut-off value in re-
ciprocal space. Interpolated to the reciprocal space grid
of latepp and multiplied by the respective spherical har-
monics of the angular part Ωq of the reciprocal lattice
vector q = k +G, the KB projector

〈q|χKB
lm 〉 = 4π(−i)lY ∗

lm(Ωq)u
KB
l (q) (18)

can be used to either construct the matrix elements

〈q|V̂ KB
NL |q′〉 =

∑

lm

〈q|χKB
lm 〉EKB

l 〈χKB
lm |q′〉 (19)

or to get the new components q of the matrix multipli-
cation in the iterative solver methods

〈q|V̂ KB
NL |ψn〉 =

∑

lm

〈q|χKB
lm 〉EKB

l

∑

q′

〈χKB
lm |q′〉〈q′|ψn〉 .

(20)
Again, including atoms and the concepts of weights as in
equations (3) and (10) results in a structure factor, which
can be stored in memory or recalculated in each iteration.
The first approach is faster but is limited by the available
memory, whereas the recalculation of structure factors in
each iteration is extremely time consuming. The required
memory or number of evaluations scales with the square
of the system size since the number of structure factors
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is given by the product of the number of plane waves and
the number of atoms.
The real space representation of the projector is given

by

〈r|χKB
lm 〉 =

∑

α,n

δVl(|r − τα,n|)ul(|r−τα,n|)
|r−τα,n|

〈ulδVl|δVlul〉
1
2

Ylm(Ωr−τα,n
) .

(21)
Due to the short-ranged character of the non-local projec-
tors, the integration is restricted to a small sphere around
the atoms. Thus, assuming a constant density of the grid,
the evaluation scales linearly with the number of atoms
of the system.
The wavefunctions in reciprocal space 〈k + G|ψ〉 =

ψk(G) are stored on the reciprocal lattice sites G and the
real space representation is obtained by Fourier transfor-
mation

ψk(r) = 〈r|ψk〉 =
∑

G

〈r|k +G〉〈k +G|ψ〉

=
1√
NG

∑

G

ei(k+G)rψk(G)

= eikr
1√
NG

∑

G

eiGrψk(G) . (22)

Thus, in real space treatments for non-zero k points, the
phase appearing in the last line of equation (22) must be
taken into account.

6. Spin-orbit coupling

The relativistic effect of the coupling of the orbital an-
gular momentum of the electron and its spin44 can be
incorporated within the formulation of norm-conserving
pseudopotentials45,46

V̂ ion
ps =

∑

l,M

|l + 1

2
,M〉Vl,l+ 1

2
(r)〈l + 1

2
,M |+

∑

l,M ′

|l − 1

2
,M ′〉Vl,l− 1

2
(r)〈l − 1

2
,M ′| , (23)

whithM ranging from −(l+ 1
2 ) to l+

1
2 ,M

′ ranging from

−(l − 1
2 ) to l − 1

2 and

|l ± 1

2
,M〉 = 1√

2l + 1


 ±

√
l ±M + 1

2 |l,M − 1
2 〉√

l ∓M + 1
2 |l,M + 1

2 〉




(24)

being the spin angular functions in the two component
spinor formalism. These pseudopotentials now depend on
the joint orbital and spin angular momentum j = l ± s.
By defining an averaged l-dependent potential weighted
by the different j degeneracies of the |l ± 1

2 〉 states

V l(r) =
1

2l + 1

(
lVl,l− 1

2
(r) + (l + 1)Vl,l+ 1

2
(r)

)
(25)

and a potential describing the difference in the potential
with respect to the spin

V SO
l (r) =

2

2l + 1

(
Vl,l+ 1

2
(r)− Vl,l− 1

2
(r)

)
, (26)

the total pseudopotential operator reads

V̂ ion
ps = V̂NL+V̂SO =

∑

l,m

|l,m〉
[
V l(r) + V SO

l (r)L̂ · Ŝ
]
〈l,m| ,

(27)
with m ranging from −l to l. The first term corresponds
to the scalar relativistic mass velocity and Darwin cor-
rections, which are most often included in the available
pseudopotentials. The latter term is associated with the
spin-orbit coupling, which remains to be evaluated for a
fully relativistic description.

In real space, a simple yet efficient treatment is imple-
mented, which takes advantage of an expression encoun-
tered along the lines of the derivation of equation (27)
from equation (23), which is demonstrated in the follow-
ing. Reversing equations (25) and (26)

Vl,l+ 1
2
(r) = V l(r) +

l

2
V SO
l (r) (28)

Vl,l− 1
2
(r) = V l(r)−

l + 1

2
V SO
l (r) (29)

the ionic pseudopotential can be rewritten to read
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V̂ ion
ps =

∑

l,M

(
V l(r) +

l

2
V SO
l (r)

)
|l + 1

2
,M〉〈l + 1

2
,M |+

∑

l,M ′

(
V l(r)−

l + 1

2
V SO
l (r)

)
|l − 1

2
,M ′〉〈l − 1

2
,M ′|

=
∑

l

V l(r)
(∑

M

|l + 1

2
,M〉〈l + 1

2
,M |+

∑

M ′

|l − 1

2
,M〉〈l − 1

2
,M |

)
+

∑

l,M

l

2
V SO
l (r)|l + 1

2
,M〉〈l + 1

2
,M | −

∑

l,M ′

l + 1

2
V SO
l (r)|l − 1

2
,M ′〉〈l − 1

2
,M ′| . (30)

As outlined in more detail in the appendix, the relation of
the operator in the basis of the |l± 1

2 ,M〉 in equation (30)

and in the basis of the |l,m〉 ⊗ | ± 1
2 〉 is given by

∑

M

|l + 1

2
,M〉〈l + 1

2
,M |+

∑

M ′

|l − 1

2
,M ′〉〈l − 1

2
,M ′|

=
∑

m

(
|l,m, 1

2
〉〈l,m, 1

2
|+ |l,m,−1

2
〉〈l,m,−1

2
|
)

(31)

with

|l,m, 1
2
〉 .
=

(
|l,m〉
0

)
(32)

|l,m,−1

2
〉 .
=

(
0
|l,m〉

)
. (33)

Here, the | ± 1
2 〉 are the eigenstates of the Ŝz operator.

Using the relation in equation (31) and the fact that

∑

m

(
|l,m, 1

2
〉〈l,m, 1

2
|+ |l,m,−1

2
〉〈l,m,−1

2
|
)

=
∑

m

|l,m〉〈l,m|
(
|1
2
〉〈1
2
|+ | − 1

2
〉〈−1

2
|
)

(34)

=
∑

m

|l,m〉〈l,m| · 1 ≡
∑

m

|l,m〉〈l,m| (35)

as well as the eigenvalue relation of the L̂ · Ŝ = 1/2(Ĵ2−
L̂2 − Ŝ2) operator applied on the spin angular functions

L̂ · Ŝ|j,M〉 =
{

l
2 |l + 1

2 ,M〉 for j = l + 1
2

− l+1
2 |l − 1

2 ,M〉 for j = l − 1
2

, (36)

the potential can be further evaluated to read

V̂ ion
ps =

∑

l

V l(r)
∑

m

(
|l,m, 1

2
〉〈l,m, 1

2
|+ |l,m,−1

2
〉〈l,m,−1

2
|
)
+

∑

l,M

l

2
V SO
l (r)|l + 1

2
,M〉〈l + 1

2
,M | −

∑

l,M ′

l + 1

2
V SO
l (r)|l − 1

2
,M ′〉〈l − 1

2
,M ′| (37)

=
∑

l,m

V l(r)|l,m〉〈l,m|+
∑

l

V SO
l (r)L̂ · Ŝ

(∑

M

|l + 1

2
,M〉〈l + 1

2
,M |+

∑

M ′

|l − 1

2
,M ′〉〈l − 1

2
,M ′|

)
(38)

=
∑

l,m

(
V l(r) + V SO

l (r)L̂ · Ŝ
)
|l,m〉〈l,m| . (39)

The summation indices m, M and M ′ cover the values
as before.
However, within the formalism suggested here and as

implemented in latepp, the L̂ · Ŝ operator is never eval-
uated. Instead, equation (37) is used. Moreover, the ex-
pression is extended to the fully nonlocal formulation of

Kleinman and Bylander. As stated above, the scalar rel-
ativistic contributions are already contained in the non-
local treatment and only the two remaining spin-orbit
parts need to be considered, which are reformulated to
read
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V̂SO =
∑

l


 l

2
El

l+1/2∑

M=−(l+1/2)

|χSO
l+1/2,M 〉〈χSO

l+1/2,M | −
l + 1

2
El

l−1/2∑

M=−(l−1/2)

|χSO
l−1/2,M 〉〈χSO

l−1/2,M |


 (40)

with

|χSO
l± 1

2
,M 〉 =

|Rl± 1
2

V SO
l l ± 1

2 ,M〉
〈ul± 1

2
V SO
l |u± 1

2
lV SO

l 〉
1
2

(41)

El± 1
2

=
〈ul± 1

2
V SO
l |ul± 1

2
V SO
l 〉

〈ul± 1
2
|V SO

l |ul± 1
2
〉 (42)

ul± 1
2
(r) = Rl± 1

2
(r)r . (43)

The present approach is different than the one used in
other codes47,48 that are based on a formulation of Hem-
street et. al.49, who apply the transformation according
to Kleinman and Bylander already to equation (23) (af-
ter subtracting a local potential) followed by expressing
the δVl±1/2(r)Rl±1/2(r) in terms of a scalar relativistic
and spin-orbit difference part. This results in an intri-
cate expression for the pseudopotential consisting of pro-
jectors constructed by all possible combinations of the
scalar relativistic and spin-orbit difference parts appear-
ing in the ket and bra states of the operator. The slim
spin-orbit operator in the present approach comes at the
small additional expense of a one-time initial evaluation
of the angular functions of the second spinor component
for the grid points within the atomic spheres (similar to
equation (21)) for both, the |χSO

l+1/2,M 〉 and |χSO
l−1/2,M 〉

states used in the projector. The big advantage, instead,
is the circumvention of evaluating the angular and spin
momentum operator. In the case of the implementation
in parsec47, expressing L̂ · Ŝ = L̂zŜz+

1
2 (L̂+Ŝ−+ L̂−Ŝ+),

three of the six stencils describing the spin-orbit coupling
become more complicated off-diagonal (in terms of the
|l,m〉 basis) stencils due to the creation and annihilation

operators. In abinit
50, evaluating L̂ = r̂ × p̂ on the

Legendre polynomial introduced by the vector addition
theorem of the spherical harmonics, the formalism is no
longer separable resulting in an inner loop over all grid
points nested within an outer loop over all grid points of
an atomic sphere.
Moreover, it is worth to note that the wrong normal-

ization constants

Cl±1/2 = 〈Rl±1/2|δVl±1/2|Rl±1/2〉
1
2 (44)

are used in some of the previously stated formalisms47–49,
which instead should read

Cl±1/2 = 〈ul±1/2|δVl±1/2|ul±1/2〉
1
2 (45)

due to an additional factor of r2 originating from the
integration in spherical coordinates. As later illustrated

in Fig. 17 in section III F, the introduced error is in the
range of a few to 30meV for the spin splitting in GaAs.
The V SO

l (r) and Rl± 1
2
of fully relativistic pseudopoten-

tials are used. These are imported from files other than
the files containing the scalar relativistic non-local pseu-
dopotentials, which allows for a more flexible spin-orbit
treatment.
Moreover, the size of the wavefunction vector has to be

doubled. Next to the spin-orbit treatment, the additional
subspace is likewise considered in the kinetic energy as
well as the local and non-local potential evaluation.

III. APPLICATIONS AND TESTS

To present the features of latepp and point out its
ability to deal with nanoclusters, it is applied to GaAs
quantum dots (QDs) embedded in AlAs. Next to some
basic illustrative results on the electronic properties of
these QDs, the calculations are meant to test the scaling
and performance behavior of the code, which are sup-
plemented by calculations of supercells of bulk GaAs of
varying size. The capability of describing spin-orbit in-
teractions is demonstrated in calculations of primitive
cells of bulk GaAs.
For a comparison of AEPs with results from DFT, the

reader is referred to the work introducing the AEPs21, in
which bulk structures as well as different types of quan-
tum wells are studied in detail, demonstrating good accu-
racy and a high level of transferability of the potentials.

A. Eigensolver

The eigensolver, enabling access to a specific fraction
of the eigenspectrum of the Hamiltonian, is one of the
most important components of the machinery.
As a first test, the number of iterations of the solver

requesting 4 complete blocks of degenerate eigenvalues
that consist of 14 eigenstates in total with respect to
the specified reference energy is investigated on a bulk
GaAs structure of 512 atoms. The number of basis vec-
tors of the operating Krylov subspace is chosen to be four
times larger than the number of requested states. The
results are shown in Fig 1. Data points enclosed by a
circle correspond to calculations yielding the requested
blocks of solutions. They are all located in the shaded
region marking the energy range for which the same so-
lutions are expected. This is only true if the tolerance
of the ARPACK solver is set close to machine precision.
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FIG. 1: Number of iterations of the ARPACK solver request-
ing 14 states with respect to the utilized reference energy.
The shaded region marks the range of reference energies for
which the same solutions are expected. Data points supplied
with a circle identify calculations that indeed contain these
solutions. The blue lines correspond to the 4 blocks of eigen-
values of the requested states. The red line corresponds to
the middle of the band gap.

For larger tolerances, some of the solutions fail to ap-
pear, which is attributed to the high degree of degen-
eracy in the eigenspectrum of the large supercell of bulk
GaAs. If the reference energy is shifted outside of this re-
gion, new states appear while others disappear from the
solved spectrum resulting in incomplete blocks of degen-
erate states, which are obviously harder to converge for
ARPACK. This supports the finding30 of optimal perfor-
mance if complete clusters of eigenvalues are requested.

In a second test, the behavior of the solver with re-
spect to the number of requested states is analyzed. To
reduce the influence of clusters of degenerate eigenvalues,
a large GaAs bulk structure consisting of 1, 728 atoms
with a single distorted Ga atom is used as a test con-
figuration. A second distortion different from the first
one is investigated to exclude a possibly remaining high
symmetry configuration in the first case. For the second
distortion, the behavior is shown for two different refer-
ence energies. The reference energies, in both cases, are
chosen to be below the lowest eigenvalue of the spectrum
to be solved. Fig. 2 shows the number of iterations and
total time of the ARPACK computation with respect to
the number of requested states. No obvious dependency
of the number of requested states can be identified. For
the first distortion, there is a maximum at 19 states and
no solution is found if 16 states are requested. Using
a different distortion does not significantly improve the
behavior. In fact, ARPACK still does not converge if
16 states are requested and again the maximum appears
at 19 states with an almost identical number of required
iterations. However, a variation of the reference energy
changes this behavior. A solution is found if 16 states are
requested and the former maximum number of iterations
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FIG. 2: Number of iterations required to achieve convergence
with respect to the number of requested states for a GaAs bulk
structure consisting of 1, 728 atoms, for which two different
distortions are applied to a single Ga atom of the structure.

at 19 states is drastically reduced. This suggests the ef-
fective matrix H−Eref1 to be ill-conditioned for the first
reference energy Eref of −0.40 eV in the respective sub-
space determined by the number of requested states. In
the second case, for a reference energy of −0.45 eV, the
effective matrix seems to be well behaved for all the re-
spective subspaces. Unfortunately, a numerically cheap
a priori test of the condition number of the matrix is not
available. A pragmatic solution is a slight shift of the
reference energy in cases where convergence cannot be
achieved.

B. Numerical accuracy tests and optimization of

computational parameters

Before moving on to the applications, the influence of
the plane wave energy cut-off, grid size and polynomial
order of the finite difference approximation are investi-
gated.

1. Size of the FFT grid

In the reciprocal space basis, the minimum grid needs
to include all possible plane waves up to the cut-off en-
ergy. However, to include all possible reciprocal lattice
vectors G − G′ as they occur in the expression of the
local potential in equation (9), the size of the full grid
must be chosen to range from −2Gcut to 2Gcut in each
dimension. Next to the local potential, the grid size af-
fects the sampling of the projectors and the wavefunction
of the non-local potential if evaluated in real space. More
accurate sampling is naturally expected for higher grid
densities. Both effects are illustrated in Fig. 3, which
shows the convergence of the band gap of a bulk GaAs
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FIG. 3: Convergence of the band gap energy of a bulk GaAs
supercell containing eight atoms for two plane wave energy
cut-offs (green: 22Ha, blue: 30Ha) with respect to the grid
size in one dimension in terms of the minimum grid (M); the
full grid is indicated by (F) . Results are shown for calculations
in the reciprocal space basis with the non-local potential be-
ing evaluated in real space (dashed line) and reciprocal space
(solid line).

supercell containing eight atoms for two plane wave en-
ergy cut-offs with respect to the utilized grid size in each
dimension for calculations in a reciprocal space basis with
the non-local potential being evaluated in real as well as
in reciprocal space. Already the results of the 22Ha cal-
culations are considered converged employing a conver-
gence tolerance of ±5meV. In the case of the non-local
potential evaluation in reciprocal space (solid line), the
observed convergence is entirely governed by the local po-
tential contribution. As can be seen from the insets, the
contribution turns out to be small and already the min-
imum grid yields converged results. If evaluated in real
space, a more distinct convergence characteristic repre-
sented by the dashed lines is observed. This is due to
the reals space sampling of the non-local projectors and
the wavefunction, which are refined and become more
accurate with an increasing number of grid points. Still,
the deviations from the respectively converged band gap
are always below 2meV, which suggests a minimum grid
ranging from −Gcut to +Gcut to be sufficient for proper
sampling.

2. Comparison of the real and reciprocal space

implementation

To compare calculations that are entirely carried out
in real space with calculations perfomed in the reciprocal
space basis, the previous finding of a sufficient minimum
grid is used to relate the number of grid points per di-
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FIG. 4: Convergence of the band gap energy of a bulk GaAs
supercell containing eight atoms with respect to the plane
wave cut-off energy. For the full real-space calculations the
equivalent cut-off energy is calculated according to Eq. (46).
The kinetic energy is calculated in real (blue) or reciprocal
space (red or green) and the non-local potential in real (blue
or green) or reciprocal (red) space.

mension Nd with the plane wave energy cut-off Ecut, i.e.

Ecut =
1

2

(
Ndπ

a

)2

. (46)

A comparison using the respective mapping is displayed
in Fig. 4, which shows the convergence of the band gap
with respect to the actual and equivalent plane wave cut-
off energy. As mentioned before, converged band gap
energies are obtained beyond 22Ha in the plane wave
basis (red and green lines). The full real-space treatment
(blue) converges slightly later at equivalent 25Ha due to
the additional approximation in the kinetic energy eval-
uation, which depends on the grid density, as discussed
in the following.

3. Polynomial order of the finite difference approximation

The band gap with respect to the polynomial order ac-
cording to equation (8) is shown in Fig. 5. As expected,
the error introduced by the finite difference scheme de-
creases with increasing polynomial order. Moreover, the
error for a fixed value of the polynomial order likewise
decreases with increasing grid size. The remainder of the
finite difference expansion obviously depends directly on
the grid spacing, which becomes smaller for denser grids.
Because the number of operations to calculate the kinetic
energy per real space grid point depends linearly on the
polynomial order O, but the number of real space grid
pointsN itself scales cubic with the number of grid points
in each direction Nd, it is advised to use big enough poly-
nomial orders in favor of smaller grid sizes and, equiva-
lently, vector sizes. For instance, similar accuracy is ob-
tained for grid sizes Nd = 40, O = 4 and Nd = 30, O = 6,
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FIG. 5: Convergence of the band gap energy of a bulk GaAs
supercell containing eight atoms with respect to the polyno-
mial order of the finite difference scheme in the fully real-space
calculations. Results for different grid sizes are shown.

which involve 3 ·4 ·403 = 768, 000 and 3 ·6 ·303 = 486, 000
operations respectively. Next to the smaller number of
required operations, the vector size of 303 = 27, 000 in
contrast to 403 = 64, 000 grid points is much smaller in
the latter approach.

C. Eigenstates and wavefunctions of GaAs

quantum dots in AlAs

Spherical GaAs QDs are embedded in a cubic supercell
of AlAs. The AEPs for Ga are derived from an ab initio
pseudopotential for Ga not considering the 3d electrons
as valence electrons. The lattice constant of the GaAs
QD as well as the AlAs bulk is set to an averaged exper-
imental value of 10.68 a0. The equilibrium LDA lattice
constants for GaAs and AlAs are 10.13 a0 and 10.72 a0,
respectively. Different sizes of the QD ranging from 1 up
to 12 nm corresponding to 2 up to 21 lattice constants in
diameter are investigated. A minimum distance of two
lattice constants between the periodically repeated QDs
is sufficient to isolate them electronically. The respective
dimensions and parameters of interest of the three largest
structures are summarized in Table I. The reciprocal
space basis is chosen for all calculations with the non-
local potential being evaluated in real space. The cal-
culations are performed at the Γ point, utilizing a plane
wave cut-off energy of 10Ha. For the larger supercell cal-
culations, consisting of more than ten thousand atoms, a
reduced cut-off energy of 6Ha has been used.
In Fig. 6 the band structures of bulk GaAs and AlAs

at the averaged experimental lattice constant are shown.
The direct band gap of GaAs is 0.90 eV, which is lower
than the indirect gap of 1.33 eV for AlAs, which involves
a transition from the X point in the conduction to the Γ
point in the valence band.
Solutions in the vicinity of the valence band maximum

Supercell size (a3) 123 203 233

Dot diameter (a) 10 18 21
Number of Al atoms 4,800 19,768 29,156
Number of Ga atoms 2,112 12,232 19,512
Number of As atoms 6,912 32,000 48,668
Total number of atoms 13,824 64,000 97,336
latepp grid size 2003 (3653) 2403 (4693) 2883 (5413)
Plane wave cut-off (Ha) 10 6 6
Number of plane waves 9,545,913 6,847,715 31,243,629

TABLE I: QD diameter and size of the cubic supercells in-
cluding the number of atoms for three different GaAs QDs
embedded in AlAs with a = 10.68 a0 being the averaged ex-
perimental lattice constant. The last rows show the utilized
latepp grid size and the full grid size (in brackets) to contain
all possible reciprocal lattice vectors G −G

′ with respect to
the cut-off energy as well as the number of plane waves.
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FIG. 6: Excerpt of the electronic band structure of the highest
occupied p and the lowest unoccupied s state of GaAs (left)
and AlAs (right) bulk structures.

(VBM) and conduction band minimum (CBM) are ob-
tained separately by two independent calculations with
a different reference energy. Considering the band gaps
and band offsets obtained from the bulk calculations, the
wavefunctions of the highest occupied and lowest unoc-
cupied states in the QD structure are, in a first quick
thought, expected to be localized within the GaAs QD.
In fact, this is true for the VBM as can be seen in Fig. 7,
which displays the wavefunctions of the largest of the
investigated QD structures consisting of 23×23×23 lat-
tice constants corresponding to 97,336 atoms. The red
wavefunction corresponds to the highest occupied state,
which is localized in the GaAs QD. In contrast, the low-
est unoccupied state turns out to be localized within the
AlAs barrier as indicated by the blue isosurface. Using
an empirical pseudopotential method51, a direct to indi-
rect transition in real space was observed for this mate-
rial system if the radius of the GaAs QD decreases below
5 nm. Due to confinement, the lowest unoccupied molec-
ular orbital state of the QD shifts above the CBM of the
barrier, with the latter originating from the X point in
the Brillouin zone. Thus, the band gap is indirect in re-
ciprocal as well as in real space, which is in agreement
with the present band structure calculation of bulk AlAs
in Fig. 6 determining the CBM at the X point.

Although these results are in qualitative agreement to
the EPM calculations, they remain quantitatively inac-
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Wavefunctions of highest occupied states

Wavefunctions of lowest unoccupied states

FIG. 7: Squared wavefunction in real space of the highest oc-
cupied (top, red) and lowest unoccupied (bottom, blue) states
of a GaAs QD embedded in AlAs. Green, tan and silver
spheres correspond to Ga, Al and As atoms. The structure
consists of 97,336 atoms.

curate due to the deficiencies of the local density approxi-
mation, which severely underestimates band gaps and ef-
fective masses. A correction to the band gap is therefore
required to compare to experiment. Although possible in
latepp, this is not the scope of the present paper.
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FIG. 8: Total calculation time for a QD structure consisting of
4×4×4 lattice constants containing 512 atoms with respect to
the number of threads. Results of four different combinations
of libraries utilized in latepp are shown.

D. Parallelization

Parts of the latepp algorithms are parallelized using
the shared memory OpenMP standard52. To test its per-
formance and scalability, QD as well as bulk structures of
different sizes are solved on one compute node containing
two quad-core CPUs (Intel(R) Xeon(R) E5540 2.53GHz)
equipped with 24GByte of memory up to a maximum
number of eight threads. Furthermore, different versions
of the numerical libraries, i.e. ARPACK29,30 for the iter-
ative solver and the Intel Math Kernel Library providing
optimized LAPACK53 and BLAS54 routines, were tested.

Fig. 8 shows the total calculation time of the small-
est QD structure consisting of 512 atoms for all possible
combinations of employed libraries with respect to the
number of threads used in the calculation. The solid
line corresponds to calculations using ARPACK routines
utilizing multithreaded BLAS routines provided by the
Intel MKL, whereas the dashed lines utilize the serial
BLAS routines. Circles and triangles represent calcula-
tions of latepp executables linked against the sequen-
tial and multithreaded MKL library respectively. A lin-
ear relation of the calculation time with respect to the
inverse of the number of threads with almost identical
slope can be identified for all combinations. Clearly, the
multithreaded ARPACK setups outperform its sequential
variants for runs on more than one thread. The combi-
nation of the preferential multithreaded ARPACK linked
against the sequential version of the MKL yields shorter
calculation times on less or equal than four threads. How-
ever, the continuous linear decrease in calculation time
for runs on more than four threads suggests to use the
multithreaded versions of both libraries.

In Fig. 9, the speedup gained by parallelization with re-
spect to the number of threads is plotted for calculations
of the smallest QD structure using FFTE38 for transfor-
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FIG. 9: Speedup of latepp gained by parallelization with
respect to the number of threads. Here, FFTE38 is used for
the transformations.

mations between real and reciprocal space. Speedups are
additionally shown for the two parts of the iterative pro-
cedure, i.e. the evaluation of Hψ and the ARPACK algo-
rithms realizing the implicitly restarted Arnoldi method.
Although the gain in speed of the ARPACK routines in-
creases up to a number of four threads, the external solver
library seems to behave badly and even slows down if a
higher number of threads is used. In contrast, the im-
plemented evaluation of Hψ shows continuously increas-
ing speedups. Since the ARPACK part only occupies a
relatively small fraction of the iteration time, the total
speedup likewise shows an upward trend.
Although these are modest speedups, they are not un-

usual for an OpenMP parallelization on symmetric mul-
tiprocessing systems due to limitations introduced by the
memory architecture. The advantage, on the other hand,
is the simplicity of developing applications and adding
new functionalities. The advantage of latepp is the
possibility to address large structures on a single node
or even on inexpensive desktop hardware.

E. Scaling

The capability of solving large-scale problems, is illus-
trated and supported by the scaling behavior with re-
spect to the system size. The time for one iteration step
in the iterative eigensolver as a function of the number
of atoms for bulk GaAs structures is displayed in Fig. 10.
The times are averaged over 20 iterations and 20 eigen-
states are requested. Calculations in reciprocal space
with the non-local potential being evaluated in real space
(solid lines) are compared to fully real-space calculations
(dashed lines). A plane wave cut-off energy of 22Ha is
used for the reciprocal space basis. The corresponding
size of the minimum grid in the real space basis is de-
termined by equation (46). The total time (black lines)
is composed of the HΨ (blue lines) and ARPACK (or-
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FIG. 10: Time for one iteration (black lines) for bulk GaAs
structures with respect to the number of atoms. Results are
shown for fully real-space calculations (dashed lines) as well as
for calculations in the reciprocal space basis with the non-local
potential being evaluated in real space (solid lines). The total
time is composed of the time of the Hψ evaluation (blue lines)
and the ARPACK routine (orange lines). The treatment in
reciprocal space requires FFTs (red line) while a more com-
putationally intensive kinetic energy evaluation (green line) is
used in the real space treatment. A minimum grid (see Fig. 3)
and 22Ha cut-off energy for the plane waves are used.

ange lines) operations. Contributions to the HΨ routine
in turn are the FFTs (red line) and the kinetic energy
evaluation (green line) as well as the local and non-local
potentials that are evaluated in real space in both meth-
ods, which take the same amount of time and, therefore,
need not to be compared with each other.

The FFTs are only required in calculations in the re-
ciprocal space basis to transform the wavefunctions into
real space for evaluating the local and non-local poten-
tial. The kinetic energy evaluated in reciprocal space is
negligible and not shown.

In contrast, the fully real-space treatment does not re-
quire any FFT but needs a more computationally inten-
sive kinetic energy evaluation and, in addition, exhibits
a larger vector size by a factor of 6/π.

As suggested from the graph, the fully real-space treat-
ment is always faster, although more time is spent for the
ARPACK routine due to the larger vector size. This can
be traced back to the FFTs, that are slower than the real
space kinetic energy evaluation.

In both, the reciprocal space as well as the fully real-
space case, the total computational costs as well as the
respective contributions scale linearly with the number
of atoms N of the system. Unexpectedly, this is likewise
true for the FFT, which is expected to obey a complexity
of O(N log(N)). Obviously, within the investigated size
regime, the FFT operation is likewise proportional to the
number of atoms. In fact, minimum FFT grids accord-
ing to Eq. (46) corresponding to 4803 grid points for the
structure containing 64,000 atoms are used, which result
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FIG. 11: Time for the first iteration of fully real-space calcula-
tions (dashed line) and calculations in the reciprocal space ba-
sis with the non-local potential being evaluated in real space
(solid line) for different sizes of bulk GaAs structures. The
insets show magnified regions of the plot. The contribution of
the Hψ evaluation and the ARPACK routine is shown by the
blue and orange line respectively. The contributions of the
FFT and kinetic energy calculation within the Hψ evaluation
are highlighted by red and green colors.

in an overall linear scaling behavior.
In contrast, Fig. 11 shows the time per iteration for a

cut-off energy of 10Ha but using the full FFT grid, i.e.
6253 grid points for the structure consisting of 64,000
atoms. Due to the increased grid size, the expected
O(N log(N)) behavior of the FFTs is noticeable.
Linear scaling is preserved in the fully real-space treat-

ment. However, using a full grid, the vector size of the
real space basis is now 48/π times larger than the recip-
rocal space basis, which is penalized by a significantly
slower ARPACK routine (compare dashed and solid or-
ange lines). In fact, the fully real-space approach is less
favorable for the eight atom case as can be seen in the
left inset of Fig. 11. This is due to slower ARPACK
routines that operate on a much longer vector and to
slightly slower kinetic energy evaluations in real space
(compare green and red FFT times). However, for a crit-
ical number of atoms between 64 and 216, the kinetic
energy calculation in real space becomes faster than the
FFTs. Finally, the overall HΨ multiplication in the real
space basis becomes advantageous for system sizes exceed-
ing 512 atoms.

However, these findings must be taken with care. The
increased vector size typically requires a much larger
number of iterations to reach convergence and the re-
ciprocal space basis remains a competitive approach in
latepp.
To summarize, although the code does not show

demonstrative speedups gained by parallelization, the
linear scaling behavior is promising and a proper MPI
implementation could take full advantage of this fact. As
shown, latepp is able to describe structures consisting

of hundred thousand atoms at a level of accuracy very
comparable to DFT on a single node, possibly a modern
desktop computer.

F. Spin-orbit splitting in GaAs

The new implementation of the spin-orbit interaction
is demonstrated on bulk GaAs. The investigations are
restricted to the real space spin-orbit treatment, which
does not introduce any empirical character and provides
a computational advantage, thus, constituting the pre-
ferred method. For the scalar relativistic contribution,
the AEPs and nonlocal pseudopotentials for Ga consid-
ering 4s, 4p and 3d states are used. Likewise, for the spin-
orbit coupling, the difference potentials of equation (26)
of the 4p and 3d states are employed. For As, an AEP
derived from a pseudopotential considering only 4s and
4p states is used. For the spin-orbit potentials, the un-
bound 4d state must be considered in addition to the 4p
state. The ape

55 package is used for the derivation of
the ab initio difference potentials. The radial cut-off in
the psuedopotential generation for the 4d state was set
to 2.3 a0 to avoid overlapping of the atomic spheres.
For comparison, the abinit code is used, which, in its

present version, is restricted to the usage of the HGH
pseudopotentials56 if spin-orbit interaction is considered
using norm-conserving pseudpotentials. The equilibrium
lattice constant of the HGH pseudopotential for GaAs
is 10.576 a0, in rather good agreement with experiment.
The determined lattice constant of 10.599 a0 for the AEP
to match the HGH band gap is slightly increased with re-
spect to the equilibrium lattice constant of 10.596 a0 used
in the DFT calculations to generate the GaAs AEP21.

The band structures generated with abinit and
latepp are shown in Fig. 12. The band structures are
aligned with respect to the VBM. Due to the difference of
the utilized pseudopotentials, an exact agreement — even
of the band structures not considering spin-orbit effects
— cannot be expected. However, an excellent agreement
of the band structure over the whole path calculated by
DFT using HGH pseudopotentials and by latepp em-
ploying the AEPs and spin-orbit difference potentials ob-
tained from ape is found. Next to the lifting of the de-
generacy of the split-off and the light/heavy hole bands
at the Γ point, the characteristic splitting of the heavy
and light hole band approaching the L and X point is
very well described. Moreover, the spin splitting of the
two spin components represented by dashed and solid
lines along the Σ direction between the X and Γ point is
excellently captured within the utilized spin-orbit treat-
ment.
The lifting of the light/heavy hole degeneracy is shown

once more on a larger scale in Fig. 13. The latepp and
DFT results are in good agreement. The whole path from
L to Γ is very accurately reproduced. The character of
the splitting, i.e. the maxima as well as the curvature of
the splitting of the two bands is very well reproduced.
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FIG. 12: Electronic band structure of GaAs illustrating the
lifting of the degeneracy of the split-off and heavy/light hole
band at the Γ point as well as the characteristic splitting of
the heavy and light hole band approaching the L and X point
due to spin-orbit interaction. In addition, the spin splitting
of the two spin components (dashed and solid lines) between
the X and Γ point along [1 1 0] can be seen. The results of
latepp (blue lines) are compared to DFT results using abinit

employing the HGH56 pseudopotentials (black lines).
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FIG. 13: Lifting of the light/heavy hole degeneracy in GaAs
due to spin-orbit interaction. The results of latepp (solid
line) are compared to a DFT result using abinit employing
the HGH56 pseudopotentials (dashed line).

Spin splitting is pronounced along the Σ direction
starting from the Γ point. To a lesser extent, it also
also occurs between L and Γ along the Λ ([1 1 1]) direc-
tion. The difference in energy of the two spin components
between Γ and X is displayed in Fig. 14 for the conduc-
tion and the three highest valence bands. Fig. 15 shows
the respective splitting of the heavy hole band between Γ
and L. The spin splitting is very well reproduced by the
spin-orbit treatment of latepp, although two different
pseudopotentials were used in the calculations.

In Fig. 16, the spin splitting of the heavy hole band
from Γ to X along the Σ direction is displayed separately
including a magnified region near the Γ point illustrating
the capability of describing very accurately the character-
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FIG. 14: Spin splitting in the valence and conduction bands
of GaAs between the Γ and X point along the [1 1 0] direc-
tion due to spin-orbit interaction. Results of latepp (solid
lines) are compared to DFT results using abinit employing
the HGH56 potentials (dashed lines).
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FIG. 15: Spin splitting in the heavy hole band of GaAs be-
tween the L and Γ point along the Λ direction due to spin-
orbit interaction. The result of latepp (solid line) is com-
pared to the DFT result using abinit employing the HGH56

potentials (dashed line).

istic bump and its respective linear and cubic dependence
on the distance from the band extremum57,58.

Finally, the importance of the correct normalization
of the spin-orbit projectors is illustrated. As shown in
Fig. 17, the error introduced by the wrong normalization
constant as reported in Refs. 47–49 is in the range of a
few to 30meV for the spin splitting in GaAs.
In summary, these results show that the treatment

of spin-orbit interaction as implemented in latepp can
be considered suitable to properly account for spin-orbit
coupling.

IV. CONCLUSION AND SUMMARY

The latepp code solving the Schrödinger equation of
an electronic system has been introduced. It uses atomic
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FIG. 17: Spin splitting in the valence bands of GaAs between
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interaction. Results of latepp (solid lines) are compared to
DFT results using abinit employing the HGH56 potentials
(dashed lines). In addition, results with the wrong normal-
ization as given in Refs. 47–49 are shown (blue lines).

effective pseudopotentials derived from self-consistent ab
initio DFT calculations. A self-consistent cycle is not
required, which reduces computational costs and allows
for the calculation of only a few eigenstates of interest.
Thus, latepp is specifically suited for the investigation
of the electronic structure in the vicinity of the band gap
of semiconductor nanostructures. These are intended to
be used in a subsequent calculation of many-body effects
using configuration interaction18. As has been shown,
structures containing up to hundred thousand atoms can
be treated at an atomistic ab initio level comparable to
DFT, with the respective approximation for exchange
and correlation on a single node.

The possibility to represent the wavefunction and to
evaluate parts of the Hamiltonian either in a plane
wave or real space basis allowed for a coherent analysis
and direct comparison of different approaches. Among
the different possible combinations, the reciprocal space
method with the local and non-local pseudopotential be-
ing evaluated in real space as well as the fully real-space
method constitute the most competitive procedures.

Linear scaling with the system size is achieved in
the fully real-space treatment for all investigated system
sizes.

The minimum FFT grid, which is just large enough
to contain the plane wave sphere while truncating high
frequency components of the local potential, is shown
to be sufficient to reach an accuracy below ±2meV in
the eigenvalues. Using this minimum grid we obtain for
calculations up to 64,000 atoms using the reciprocal space
basis a nearly linear scaling, despite the O(N log(N))
scaling of the FFTs.

We showed that results converged to the same accuracy
(below ±2meV) can be obtained in the fully real-space
method using a grid that is equivalent to the minimum
FFT grid.

Moreover, the convergence with respect to the polyno-
mial order of the finite difference approximation for the
kinetic energy in real space is discussed and an polyno-
mial order of six is found to be ideal.

Finally, a new and efficient real space implementation
of spin-orbit interaction based on the formulation within
the basis of spin angular functions is presented. This
implementation, which does not require the evaluation
of the product of angular momentum and spin operator,
is different from other codes. Direct comparison with
standard DFT codes show that spin-orbit interaction in
our formalism is accurately accounted for.
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Appendix: Change of basis

To prove the equivalence of equation (23) and (27), the
basis transformation

|l ± 1

2
,M〉 → |l,m〉 ⊗ | ± 1

2
〉 (47)
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to obtain equation (31) has yet to be shown. The
Clebsch-Gordon coeeficients

C+
l+ 1

2
,M

=

√
l +M + 1

2√
2l + 1

C−
l+ 1

2
,M

=

√
l −M + 1

2√
2l + 1

C+
l− 1

2
,M

=
−
√
l −M + 1

2√
2l + 1

C−
l− 1

2
,M

=

√
l +M + 1

2√
2l + 1

connecting the spin angular functions as defined in equa-
tion (24) with the spherical harmonics have the following
properties:

C+
l+ 1

2
,M
C−

l+ 1
2
,M

= −C+
l− 1

2
,M
C−

l− 1
2
,M

(48)

C±
l+ 1

2
,M

2
+ C±

l− 1
2
,M

2
= 1 (49)

Writing short |±〉 = | ± 1
2 〉 and assuming spinor notation

|α〉 = |+〉〈+|α〉+ |−〉〈−|α〉 = α+|+〉+ α−|−〉
.
=

(
〈+|α〉
〈−|α〉

)
=

(
α+

α−

)
, (50)

the projectors constructed out of the spin angular func-
tions for a specific quantum number M are

|l +
1

2
,M〉〈l +

1

2
,M | =

(
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2
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Due to the properties of the coefficients (equation (48) and (49)), the sum of both parts becomes
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The off-diagonal contributions | . . .〉|±〉〈∓|〈. . . | with re-
spect to spin vanish due to equation (48) and the prefac-
tors of the diagonal contributions | . . .〉|±〉〈±|〈. . . | sum
up to one (equation (49)). Finally, taking the sum
over all M populates both spinor components with all
possible magnetic quantum numbers m of the spheri-

cal harmonic of angular momentum l. Then, writing
|l,m〉|±〉 = |l,m,±〉 proves the basis transformation as
outlined in equation (31). The closure relation

1 = |+〉〈+|+ |−〉〈−| (54)
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is used to obtain equation (35)

|l,m,+〉〈l,m,+|+ |l,m,−〉〈l,m,−|
= (|l,m〉 ⊗ |+〉) (〈l,m| ⊗ 〈+|) + (|l,m〉 ⊗ |−〉) (〈l,m| ⊗ 〈−|)
= |l,m〉〈l,m| ⊗ |+〉〈+|+ |l,m〉〈l,m| ⊗ |−〉〈−|
= |l,m〉〈l,m| ⊗ (|+〉〈+|+ |−〉〈−|)
= |l,m〉〈l,m| ⊗ 1

≡ |l,m〉〈l,m| (55)

and illustrates how equation (27) of the original litera-
ture45,46 is to be understood.
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X. Gonze, Phys. Rev. B 78, 045119 (2008).
51 J.-W. Luo, A. Franceschetti, and A. Zunger, Phys. Rev. B

78, 035306 (2008).
52 OpenMP Architecture Review Board, OpenMP application

program interface version 3.0 (2008).
53 E. Anderson, Z. Bai, C. Bischof, L. S. Blackford, J. Dem-

mel, J. Dongarra, J. D. Croz, A. Greenbaum, S. Hammar-
ling, A. McKenney, et al., LAPACK Users’ Guide (Society
for Industrial and Applied Mathematics, 1999), 3rd ed.,
http://epubs.siam.org/doi/pdf/10.1137/1.9780898719604.

54 C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T.
Krogh, ACM Transactions on Mathematical Software 5,
324 (1979), ISSN 0098-3500.

55 M. J. T. Oliveira and F. Nogueira, Computer Physics Com-
munications 178, 524 (2008), ISSN 0010-4655.

56 C. Hartwigsen, S. Goedecker, and J. Hutter, Phys. Rev. B
58, 3641 (1998).

57 M. Cardona, N. E. Christensen, and G. Fasol, Phys. Rev.
B 38, 1806 (1988).

58 J.-W. Luo, A. N. Chantis, M. van Schilfgaarde, G. Bester,
and A. Zunger, Phys. Rev. Lett. 104, 066405 (2010).


