

Kinetik des Selbstorganisationsvorgangs bei der Bildung von SiC_x -Ausscheidungs-Arrays in C^+ -Ionen-implantiertem Silizium

F. Zirkelbach, M. Häberlen, J. K. N. Lindner und B. Stritzker

Überblick

- selbstorganisierte SiC_x -Ausscheidungen
- Modell zur Beschreibung des Selbstorganisationsprozesses
- Umsetzung des Modells in eine Monte-Carlo-Simulation
- Vergleich von Simulationsergebnissen mit experimentellen Befunden
- Zusammenfassung

Cross-Section TEM-Aufnahme selbstorganisierter amorpher Lamellen

Hellfeld-TEM-Abbildung, 180keV $C^+ \rightarrow Si(100)$, 150 °C, $4.3 \times 10^{17} cm^{-2}$

Modell

- Löslichkeit von Kohlenstoff in c-Silizium überschritten
 - \rightarrow Nukleation sphärischer SiC_x -Ausscheidungen
- hohe Grenzflächen
energie zwischen c-Si und 3C-SiC
 - \rightarrow Ausscheidungen sind \mathbf{amorph}
- 20 30% geringere Dichte von amorphen zu kristallinen $SiC \rightarrow$ **Druckspannungen** auf Umgebung
- nahe der Oberfläche
 - \rightarrow Relaxation der Druckspannung in z-Richtung
- Abbau der Kohlenstoffübersättigung in kristallinen Gebieten
 - \rightarrow Diffusion von Kohlenstoff in amorphe Gebiete
- Druckspannungen
 - \rightarrow bevorzugte Amorphisierung zwischen zwei amorphen Ausscheidungen

Simulation

	Version 1	Version 2
Anzahl Zellen (x, y, z)	$64 \times 64 \times 100$	$64 \times 64 \times 233$
nukleares Bremskraftprofil	linear genähert	exakt (TRIM)
Implantationsprofil	linear genähert	exakt (TRIM)
Treffer pro implantierten Teilchen	1	exakt (TRIM)
Anzahl der implantierten Teilchen	freier Parameter	\equiv Dosis

Amorphisierungs und Rekristallisationswahrscheinlichkeit

$$p_{c \to a}(\vec{r}) = p_b + p_c c_{Kohlenstoff}(\vec{r}) + \sum_{amorphe Nachbarn} \frac{p_s c_{Kohlenstoff}(\vec{r'})}{(\vec{r} - \vec{r'})^2}$$
ballistisch kohlenstoffinduziert spannungsinduziert
$$p_{a \to c}(\vec{r}) = (1 - p_{c \to a}(\vec{r})) \left(1 - \frac{\sum_{direkte Nachbarn} \delta(\vec{r'})}{6}\right), \text{ mit}$$

$$\delta(\vec{r}) = \begin{cases} 1 \text{ wenn Gebiet bei } \vec{r} \text{ amorph} \\ 0 \text{ sonst} \end{cases}$$

Simulationsalgorithmus

Lamellare Strukturen

Simulation

XTEM

Tiefe [nm]

Einfluss der Diffusion

Bildung komplementär angeordneter, amorpher kohlenstoffreicher Ausscheidungen in aufeinander folgenden Ebenen.

- Verteilung amorpher Bereiche im gesamten Implantationsbereich reproduzierbar
- Kinetik des Selbstorganisationsprozesses nachvollziehbar

Zusammenfassung

• selbstorganisierte Anordnung nanometrischer Ausscheidungen bei Ionenimplantation

 $C \to Si$ $T_i: 150 - 350 \,^{\circ}\text{C}$ $D \le 8 \times 10^{17} cm^{-2}$

- Amorphisierung \rightarrow Dichteunterschied \rightarrow Spannungen \rightarrow Selbstorganisation
- Modell: Wahrscheinlichkeiten für Amorphisierung/Rekristallisation abhängig von:
 - nuklearer Bremskraft
 - Implantationsprofil
 - Spannungen
- lamellare Anordnung nachvollziehbar durch Simulation
- Entwicklung der Morphologie der a/c-Grenzfläche reproduzierbar