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Motivation

Experimentally observed selforganisation process at high-dose
carbon implantations under certain implantation conditions.

• Regularly spaced, nanometric spherical and lamellar amorphous inclu-
sions at the upper a/c interface

Cross-section TEM bright-field images:
180 keV C+

→ Si, Ti = 150 ◦C, Dose: 4.3 × 1017 cm−2

Amorphous inclusions appear white on darker backgrounds
L: amorphous lamellae, S: spherical amorphous inclusions

• Carbon accumulation in amorphous volumes

Bright-field TEM image and respective EFTEM C map:
180 keV C+

→ Si, Ti = 200 ◦C, Dose: 4.3 × 1017 cm−2

yellow/blue: high/low concentrations of carbon

Similarly ordered precipitate nanostructures also observed for
a number of ion/target combinations for which the material
undergoes drastic density change upon amorphisation.
A. H. van Ommen, Nucl. Instr. and Meth. B 39 (1989) 194.

E. D. Specht et al., Nucl. Instr. and Meth. B 84 (1994) 323.

M. Ishimaru et al., Nucl. Instr. and Meth. B 166-167 (2000) 390.

Model

Model schematically displaying the formation of ordered la-
mellae with increasing dose.

a−Si:C

dose

c−Si c−Si

C

c−Si

C

C

• Supersaturation of C in c − Si
→ Carbon induced nucleation of spherical SiCx-precipitates

• High interfacial energy between 3C − SiC and c − Si
→ Amorphous precipitates

• 20 − 30 % lower silicon density of a − SiCx compared to c − Si
→ Lateral strain (black arrows)

• Implantation range near surface
→ Relaxation of vertical strain component

• Reduction of the carbon supersaturation in c − Si
→ Carbon diffusion into amorphous volumina (white arrows)

• Remaining lateral strain
→ Strain enhanced lateral amorphisation

• Absence of crystalline neighbours (structural information)
→ Stabilisation of amorphous inclusions against recrystallisation

Simulation

Discretisation of the target

• divided into cells with a cube length
of 3 nm

• periodic boundary conditions in
x,y-direction

TRIM collision statstics

⇒ identical depth profiles for num-
ber of collisions per depth and
nuclear stopping power

⇒ mean constant energy loss per
collision

Simulation algorithm

The simulation algorithm consists of the following three parts
looped s times corresponding to a dose D = s/(64×64×(3 nm)2):

lo
op

1. Amorphisation/Recrystallisation

• random numbers distributed according to the nuclear energy loss
to determine the volume in which a collision occurs

• compute local probability for amorphisation:

pc→a(~r) = pb + pccC(~r) +
∑

amorphous neighbours

pscC(~r′)

(r − r′)2

and recrystallisation:

pa→c(~r) = (1− pc→a(~r))
(

1−

∑

direct neighbours δ(~r′)

6

)

,

δ(~r) =

{

1 if volume at position ~r is amorphous
0 otherwise

• loop for the mean amount of hits by the ion

Three contributions to the amorphisation process controlled by:

• pb normal ’ballistic’ amorphisation

• pc carbon induced amorphisation

• ps stress enhanced amorphisation

2. Carbon incorporation

• random numbers distributed according to the implantation profile
to determine the incorporation volume

• increase the amount of carbon atoms in that volume

3. Diffusion/Sputtering

Simulation parameters dv, dr and n control the diffusion
and sputtering process.

• every dv steps transfer of a fraction dr of carbon atoms from
crystalline volumina to an amorphous neighbour volume

• remove 3 nm surface layer after n loops, shift remaining cells 3 nm
up and insert an empty, crystalline 3 nm bottom layer

Comparison of experiment and simulation

Simulation parameters:
pb = 0.01, pc = 0.001 × (3 nm)3, ps = 0.0001 × (3 nm)5, dr = 0.05,
dv = 1 × 106.

Conclusion:

• Simulation in good agreement with experimentally observed formation
and growth of the continuous amorphous layer

• Lamellar precipitates and their evolution at the upper a/c interface with
increasing dose is reproduced

Simulation is able to model the whole depth region affected
by the irradiation process

Structural/compositional information

• Fluctuation of the carbon concentra-
tion in the region of the lamellae

• Saturation limit of carbon in c-Si
under given implantation conditions
between 8 and 10 at.%

• Complementarily arranged
and alternating sequence of
layers with high and low
amount of amorphous regions

• Carbon accumulation in the
amorphous phase

Recipe for thick films of ordered lamellae

Prerequisites:
Crystalline silicon target
with a nearly constant
carbon concentration at
10 at.% in a 500 nm
thick surface layer

Creation:

• Multiple energy (180-10 keV ) C+
→ Si implantation

• Ti = 500 ◦C, to prevent amorphisation

Stirring up:

2 MeV C+
→ Si irradiation step at 150 ◦C

• This does not significantly change the carbon concentration in the top
500 nm

• Nearly constant nuclear energy loss in the top 700 nm region

Result:

• Already ordered structures after 100× 106 steps corresponding to a dose
of D = 2.7 × 1017cm−2

• More defined structures with increasing dose

Starting point for materials showing strong photolumi-
nescence
Dihu Chen et al. Opt. Mater. 23 (2003) 65.

Conclusions

• Observation of selforganised nanometric precipitates by ion irradiation

• Model proposed describing the selforganisation process

• Model implemented in a Monte Carlo simulation code

• Modelling of the complete depth region affected by the irradiation process

• Simulation is able to reproduce entire amorphous phase formation

• Precipitation process gets traceable by simulation

• Detailed structural/compositional information available by simulation

• Recipe proposed for the formation of thick films of lamellar structure
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