Vorstellung der Diplomarbeit

Monte-Carlo-Simulation von selbstorganisierten nanometrischen SiC_x -Ausscheidungen in C^+ -implantierten Silizium

Frank Zirkelbach frank.zirkelbach@physik.uni-augsburg.de

Institut für Physik Lehrstuhl für Experimentalphysik IV Universität Augsburg

10. November 2005

Überblick

- Einführung und Grundlagen
 - Einführung
 - Ion-Festkörper-Wechselwirkung
 - Die Monte-Carlo-Simulation TRIM
- 2 Experimentelle Befunde und Modell
 - Experimentelle Befunde
 - Modell
- ③ Simulation und Ergebnisse
 - Simulation
 - Simulation bis 300 nm Tiefe
 - Simulation über den gesamten Implantationsbereich
 - Herstellung breiter Bereiche mit lamellarer Struktur
 - Zusammenfassung und Ausblick
 - Zusammenfassung
 - Ausblick

Einführung Ion-Festkörper-Wechselwirku TRIM

Überblick

- Einführung und Grundlagen
 Einführung
 - Ion-Festkörper-Wechselwirkung
 - Die Monte-Carlo-Simulation TRIM

2 Experimentelle Befunde und Modell

- Experimentelle Befunde
- Modell

Simulation und Ergebnisse

- Simulation
- Simulation bis 300 nm Tiefe
- Simulation über den gesamten Implantationsbereich
- Herstellung breiter Bereiche mit lamellarer Struktur

Zusammenfassung und Ausblick

- Zusammenfassung
- Ausblick

Einführung Ion-Festkörper-Wechselwirkung TRIM

Einführung Ionenimplantation

Funktionsweise

- Ionisation des Atoms/Moleküls
- Beschleunigung im elektrischen Feld $(10^2 eV GeV)$
- Bestrahlung eines Festkörpers

 \Rightarrow Modifikation oberflächennaher Schichten

Anwendung

Dotierung von Halbleiterkristallen

Einführung Ion-Festkörper-Wechselwirkung TRIM

Einführung Ionenimplantation

Funktionsweise

- Ionisation des Atoms/Moleküls
- Beschleunigung im elektrischen Feld $(10^2 eV GeV)$
- Bestrahlung eines Festkörpers

 \Rightarrow Modifikation oberflächennaher Schichten

Anwendung

Dotierung von Halbleiterkristallen

Einführung Ion-Festkörper-Wechselwirkung TRIM

Einführung Ionenimplantation

Vorteile

- exakte Kontrollierbarkeit der implantierten Menge
- Reproduzierbarkeit
- Homogenität
- Schnelligkeit
- frei wählbare Implantationstemperatur
- unabhängig von der chemischen Löslichkeitsgrenze

Einführung Ion-Festkörper-Wechselwirkung TRIM

Einführung Selbstorganisation

R. M. Bradley, J. M. E. Harper. J. Vac. Sci. Technol. A 6 (1988) 2390.

Riffelformation auf der Targetoberfläche

- selbstorganisierte Nanostrukturen durch Sputtererosion
- separierte Phasen bei der Bestrahlung binärer Legierungen

< ロ > < 同 > < 回 > < 三

periodische Rissbildung bei der Bestrahlung mit schnellen und schweren Ionen

Einführung Ion-Festkörper-Wechselwirkung TRIM

Einführung Selbstorganisation

1000 eV $Ar^+ \rightarrow InAs$, rotierendes Target, $T = 285 \text{ K}, \dot{D} = 270 \,\mu A \, cm^{-2},$ $t = 60 \, min., \, \alpha = 30^{\circ}.$

B. Ziberi, F. Frost, M. Tartz, H. Neumann, B. Rauschenbach. Thin Solid Films 459 (2004) 106.

- Riffelformation auf der Targetoberfläche
- selbstorganisierte Nanostrukturen durch Sputtererosion
 - separierte Phasen bei der Bestrahlung binärer Legierungen

< ロ > < 同 > < 三 > < 三

periodische Rissbildung bei der Bestrahlung mit schnellen und schweren Ionen

Einführung Ion-Festkörper-Wechselwirkung TRIM

Einführung Selbstorganisation

R. A. Enrique, P. Bellon. Phys. Rev. B 60 (1999) 14649.

- Riffelformation auf der Targetoberfläche
- selbstorganisierte Nanostrukturen durch Sputtererosion
- separierte Phasen bei der Bestrahlung binärer Legierungen

periodische Rissbildung bei der Bestrahlung mit schnellen und schweren lonen

Einführung Ion-Festkörper-Wechselwirkung TRIM

Einführung Selbstorganisation

230 MeV Kr⁺ \rightarrow NiO/SiO₂, D = 1.7 × 10¹⁴ cm-2, θ = 75 °.

W. Bolse, A. Schattat, A. Feyh. Appl. Phys. A 77 (2003) 11.

- Riffelformation auf der Targetoberfläche
- selbstorganisierte Nanostrukturen durch Sputtererosion
- separierte Phasen bei der Bestrahlung binärer Legierungen

periodische Rissbildung bei der Bestrahlung mit schnellen und schweren lonen

Überblick

- 1 Einführung und Grundlagen
 - Einführung
 - Ion-Festkörper-Wechselwirkung
 - Die Monte-Carlo-Simulation TRIM
- 2 Experimentelle Befunde und Modell
 - Experimentelle Befunde
 - Modell

Simulation und Ergebnisse

- Simulation
- Simulation bis 300 nm Tiefe
- Simulation über den gesamten Implantationsbereich
- Herstellung breiter Bereiche mit lamellarer Struktur

Zusammenfassung und Ausblick

- Zusammenfassung
- Ausblick

→ < Ξ → <</p>

Ion-Festkörper-Wechselwirkung

Einführung Ion-Festkörper-Wechselwirkung TRIM

Grundlagen Abbremsung der Ionen

nuklearer Bremsquerschnitt

elastischer Stoß mit Atomkernen des Targets $S_n(E) = \int_0^{T_{max}} T d\sigma$

elektronischer Bremsquerschnitt

inelastischer Stoß mit Elektronen des Targets $S_e(E) = k_L \sqrt{E}$

Bremskraft

$$-\frac{\partial E}{\partial x} = N\Big(S_n(E) + S_e(E)\Big)$$

イロト イポト イヨト イヨト

Einführung Ion-Festkörper-Wechselwirkung TRIM

Grundlagen Abbremsung der Ionen

nuklearer Bremsquerschnitt

elastischer Stoß mit Atomkernen des Targets $S_n(E) = \int_0^{T_{max}} T d\sigma$

elektronischer Bremsquerschnitt

inelastischer Stoß mit Elektronen des Targets $S_e(E) = k_L \sqrt{E}$

Bremskraft

$$-\frac{\partial E}{\partial x} = N\Big(S_n(E) + S_e(E)\Big)$$

(日) (同) (日) (日)

Einführung Ion-Festkörper-Wechselwirkung TRIM

Grundlagen Abbremsung der Ionen

nuklearer Bremsquerschnitt

elastischer Stoß mit Atomkernen des Targets $S_n(E) = \int_0^{T_{max}} T d\sigma$

elektronischer Bremsquerschnitt

inelastischer Stoß mit Elektronen des Targets $S_e(E) = k_L \sqrt{E}$

Bremskraft

$$-\frac{\partial E}{\partial x} = N\Big(S_n(E) + S_e(E)\Big)$$

(日) (同) (日) (日)

Einführung Ion-Festkörper-Wechselwirkung TRIM

Grundlagen Abbremsung der Ionen

nuklearer Bremsquerschnitt

elastischer Stoß mit Atomkernen des Targets $S_n(E) = \int_0^{T_{max}} T d\sigma$

elektronischer Bremsquerschnitt

inelastischer Stoß mit Elektronen des Targets $S_e(E) = k_L \sqrt{E}$

Bremskraft

$$-\frac{\partial E}{\partial x} = N\Big(S_n(E) + S_e(E)\Big)$$

Einführung Ion-Festkörper-Wechselwirkung TRIM

Überblick

- Einführung und Grundlagen
 - Einführung
 - Ion-Festkörper-Wechselwirkung
 - Die Monte-Carlo-Simulation TRIM
- 2 Experimentelle Befunde und Modell
 - Experimentelle Befunde
 - Modell

Simulation und Ergebnisse

- Simulation
- Simulation bis 300 nm Tiefe
- Simulation über den gesamten Implantationsbereich
- Herstellung breiter Bereiche mit lamellarer Struktur

Zusammenfassung und Ausblick

- Zusammenfassung
- Ausblick

→ < Ξ → <</p>

Einführung Ion-Festkörper-Wechselwirkung TRIM

Grundlagen Die Monte-Carlo-Simulation TRIM

Monte-Carlo-Methode

Abbildung von Zufallszahlen auf physikalische Größen

Das Prinzip von TRIM

- Verfolgung einer Vielzahl von Teilchenbahnen
- Start mit gegebener Energie, Position und Richtung
- Geradlinige Bewegung innerhalb freier Weglänge
- Energieverlust durch Stöße
- Terminiert wenn $E_{lon} < E_k$

Einführung Ion-Festkörper-Wechselwirkung TRIM

Grundlagen Die Monte-Carlo-Simulation TRIM

Monte-Carlo-Methode

Abbildung von Zufallszahlen auf physikalische Größen

Das Prinzip von TRIM

- Verfolgung einer Vielzahl von Teilchenbahnen
- Start mit gegebener Energie, Position und Richtung
- Geradlinige Bewegung innerhalb freier Weglänge
- Energieverlust durch Stöße
- Terminiert wenn $E_{lon} < E_k$

< ロ > < 同 > < 三 > < 三

Einführung Ion-Festkörper-Wechselwirkung TRIM

Grundlagen Die Monte-Carlo-Simulation TRIM

Monte-Carlo-Methode

Abbildung von Zufallszahlen auf physikalische Größen

Das Prinzip von TRIM

- Verfolgung einer Vielzahl von Teilchenbahnen
- Start mit gegebener Energie, Position und Richtung
- Geradlinige Bewegung innerhalb freier Weglänge
- Energieverlust durch Stöße
- Terminiert wenn $E_{lon} < E_k$

Einführung Ion-Festkörper-Wechselwirkung TRIM

Grundlagen Die Monte-Carlo-Simulation TRIM

Monte-Carlo-Methode

Abbildung von Zufallszahlen auf physikalische Größen

Das Prinzip von TRIM

- Verfolgung einer Vielzahl von Teilchenbahnen
- Start mit gegebener Energie, Position und Richtung
- Geradlinige Bewegung innerhalb freier Weglänge
- Energieverlust durch Stöße
- Terminiert wenn $E_{lon} < E_k$

< ロ > < 同 > < 三 > < 三 >

Einführung Ion-Festkörper-Wechselwirkung TRIM

Grundlagen Die Monte-Carlo-Simulation TRIM

Monte-Carlo-Methode

Abbildung von Zufallszahlen auf physikalische Größen

Das Prinzip von TRIM

- Verfolgung einer Vielzahl von Teilchenbahnen
- Start mit gegebener Energie, Position und Richtung
- Geradlinige Bewegung innerhalb freier Weglänge
- Energieverlust durch Stöße
- Terminiert wenn $E_{lon} < E_k$

< ロ > < 同 > < 三 > < 三 >

Einführung Ion-Festkörper-Wechselwirkung TRIM

Grundlagen Die Monte-Carlo-Simulation TRIM

Monte-Carlo-Methode

Abbildung von Zufallszahlen auf physikalische Größen

Das Prinzip von TRIM

- Verfolgung einer Vielzahl von Teilchenbahnen
- Start mit gegebener Energie, Position und Richtung
- Geradlinige Bewegung innerhalb freier Weglänge
- Energieverlust durch Stöße
- Terminiert wenn $E_{Ion} < E_k$

Einführung Ion-Festkörper-Wechselwirkung TRIM

Grundlagen Die Monte-Carlo-Simulation TRIM

Abbildung der Zufallszahlen auf die physikalischen Größen

- mittlere freie Weglänge /
- Stoßparameter p $\Rightarrow \Theta, \Delta E$
- Azimutwinkel Φ

Einführung Ion-Festkörper-Wechselwirkung TRIM

Grundlagen Die Monte-Carlo-Simulation TRIM

Abbildung der Zufallszahlen auf die physikalischen Größen

- mittlere freie Weglänge /
- Stoßparameter p $\Rightarrow \Theta, \Delta E$
- Azimutwinkel Φ

Einführung Ion-Festkörper-Wechselwirkung TRIM

Grundlagen Die Monte-Carlo-Simulation TRIM

Abbildung der Zufallszahlen auf die physikalischen Größen

• mittlere freie Weglänge /

- Stoßparameter p $\Rightarrow \Theta, \Delta E$
- Azimutwinkel Φ

Einführung Ion-Festkörper-Wechselwirkung TRIM

Grundlagen Die Monte-Carlo-Simulation TRIM

Abbildung der Zufallszahlen auf die physikalischen Größen

- mittlere freie Weglänge /
- Stoßparameter p $\Rightarrow \Theta, \Delta E$
- Azimutwinkel Φ

• • • • • • • • • • • •

Einführung Ion-Festkörper-Wechselwirkung TRIM

Grundlagen Die Monte-Carlo-Simulation TRIM

Abbildung der Zufallszahlen auf die physikalischen Größen

- mittlere freie Weglänge /
- Stoßparameter $p \Rightarrow \Theta, \Delta E$
- Azimutwinkel Φ

• • • • • • • • • • • •

Einführung Ion-Festkörper-Wechselwirkung TRIM

Grundlagen Die Monte-Carlo-Simulation TRIM

Abbildung der Zufallszahlen auf die physikalischen Größen

- mittlere freie Weglänge /
- Stoßparameter $p \Rightarrow \Theta, \Delta E$
- Azimutwinkel Φ

→ < Ξ →</p>

Überblick

- 1 Einführung und Grundlagen
 - Einführung
 - Ion-Festkörper-Wechselwirkung
 - Die Monte-Carlo-Simulation TRIM
- 2 Experimentelle Befunde und Modell
 - Experimentelle Befunde
 - Modell
- Simulation und Ergebnisse
 - Simulation
 - Simulation bis 300 nm Tiefe
 - Simulation über den gesamten Implantationsbereich
 - Herstellung breiter Bereiche mit lamellarer Struktur
 - Zusammenfassung und Ausblick
 - Zusammenfassung
 - Ausblick

< □ > < 同

Experimentelle Befunde

Modell

Experimentelle Befunde Modell

Experimentelle Befunde

Lage und Ausdehnung amorpher Phasen

Hellfeld-XTEM-Abbildung: 180 keV $C^+ \rightarrow (100)Si$, $T = 150 \,^{\circ}\text{C}$,

 $D = 4.3 \times 10^{17} cm^{-2} \qquad \langle \Box \rangle \land \langle \Box \rangle \land \langle \Xi \rangle \land \langle \Xi \rangle \land \langle \Xi \rangle \land \langle \Xi \rangle$ F. Zirkelbach Vorstellung der Diplomarbeit

Experimentelle Befunde Modell

(TRIM 92)

Experimentelle Befunde

Lage und Ausdehnung amorpher Phasen

180 keV C⁺ -> Si

Amorphe Phasen in Abhängigkeit der Dosis bei $\mathcal{T}=150\,^{\circ}\mathrm{C}$

TRIM 92: Nukleares/Elektronisches Bremskraft- und Implantationsprofil für 180 keV $C^+ \rightarrow Si$

• • • • • • • • • • • •

Experimentelle Befunde Modell

Experimentelle Befunde Kohlenstoffsegregation

Hellfeld-XTEM- und Kohlenstoffverteilungsaufnahme. $D = 4.3 \times 10^{17} cm^{-2}$, $T = 200 \,^{\circ}\text{C}$.

(日) (同) (日) (日)

Einführung und Grundlagen Experimentelle Befunde und Modell Zusammenfassung und Ausblick

Modell

Uberblick

- Einführung und Grundlagen
 - Einführung
 - Ion-Festkörper-Wechselwirkung
 - Die Monte-Carlo-Simulation TRIM
- 2 Experimentelle Befunde und Modell
 - Experimentelle Befunde
 - Modell

3 Simulation und Ergebnisse

- Simulation
- Simulation bis 300 nm Tiefe
- Simulation über den gesamten Implantationsbereich
- Herstellung breiter Bereiche mit lamellarer Struktur

Zusammenfassung und Ausblick

- Zusammenfassung
- Ausblick

< □ > < 同

Experimentelle Befunde Modell

Modell

- Überschreitung der Sättigungsgrenze von C in c Si
 - \rightarrow kohlenstoffinduzierte Nukleation sphärischer SiC_x-Ausscheidungen
- hohe Grenzflächenenergie zwischen 3C SiC und c Si → Ausscheidungen sind amorph
- 20 30 % geringere Si-Dichte des amorphen SiC_x im Vergleich zu c − Si
 → laterale Druckspannungen auf Umgebung (Relaxation in vertikaler Richtun)
- Abbau der Kohlenstoffübersättigung in kristallinen Gebiet
 Diffusion von Kohlenstoff in amorphe Gebiete
- Druckspannungen
 - → spannungsunterstützte Amorphisierung zwischen zwei amorphen
 - Ausscheidungen

イロト イボト イヨト イヨト

3

Experimentelle Befunde Modell

Modell

- Überschreitung der Sättigungsgrenze von C in c − Si
 → kohlenstoffinduzierte Nukleation sphärischer SiC_x-Ausscheidungen
- hohe Grenzflächenenergie zwischen 3C SiC und c Si
 - \rightarrow Ausscheidungen sind amorph
- 20 30 % geringere Si-Dichte des amorphen SiC_x im Vergleich zu c Si
 → laterale Druckspannungen auf Umgebung (Relaxation in vertikaler Richtur)
- Abbau der Kohlenstoffübersättigung in kristallinen Gebieten
 → Diffusion von Kohlenstoff in amorphe Gebiete
- Druckspannungen
 - → spannungsunterstützte Amorphisierung zwischen zwei amorphen
 - Ausscheidungen

(日) (同) (日) (日)

3

Experimentelle Befunde Modell

Modell

- Überschreitung der Sättigungsgrenze von C in c Si
 - \rightarrow kohlenstoffinduzierte Nukleation sphärischer SiC_x-Ausscheidungen
- hohe Grenzflächenenergie zwischen 3*C* − *SiC* und *c* − *Si* → Ausscheidungen sind amorph
- 20 30 % geringere Si-Dichte des amorphen SiC_x im Vergleich zu c Si → laterale Drucksnannungen auf Umgebung (Relaxation in vertikaler Richtu)
- Abbau der Kohlenstoffübersättigung in kristallinen Gebieten
 → Diffusion von Kohlenstoff in amorphe Gebiete
- Druckspannungen
 - ightarrow spannungsunterstützte Amorphisierung zwischen zwei amorphen
 - Ausscheidungen

(日) (同) (日) (日)
Experimentelle Befunde Modell

Modell

- Überschreitung der Sättigungsgrenze von C in c Si
 - \rightarrow kohlenstoffinduzierte Nukleation sphärischer SiC_x-Ausscheidungen
- hohe Grenzflächenenergie zwischen 3C SiC und c Si
 - \rightarrow Ausscheidungen sind amorph
- 20 30 % geringere Si-Dichte des amorphen SiC_x im Vergleich zu c Si
 → laterale Druckspannungen auf Umgebung (Relaxation in vertikaler Richtung)
- Abbau der Kohlenstoffübersättigung in kristallinen Gebieten Diffusion von Kohlenstoff in ameraka Gebiete
- Druckspannungen
 - → spannungsunterstützte Amorphisierung zwischen zwei amorphen
 - Ausscheidungen

Experimentelle Befunde Modell

Modell

- Überschreitung der Sättigungsgrenze von C in c Si
 - \rightarrow kohlenstoffinduzierte Nukleation sphärischer SiC_x-Ausscheidungen
- hohe Grenzflächenenergie zwischen 3C SiC und c Si
 - \rightarrow Ausscheidungen sind amorph
- 20 30 % geringere Si-Dichte des amorphen SiC_x im Vergleich zu c Si
 - \rightarrow laterale Druckspannungen auf Umgebung (Relaxation in vertikaler Richtung)
- Abbau der Kohlenstoffübersättigung in kristallinen Gebieten
 - \rightarrow **Diffusion** von Kohlenstoff in amorphe Gebiete
- Druckspannungen
 - ightarrow spannungsunterstützte Amorphisierung zwischen zwei amorphen
 - Ausscheidungen

< ロ > < 同 > < 三 > < 三

Experimentelle Befunde Modell

Modell

- Überschreitung der Sättigungsgrenze von C in c Si
 - \rightarrow kohlenstoffinduzierte Nukleation sphärischer SiC_x-Ausscheidungen
- hohe Grenzflächenenergie zwischen 3C SiC und c Si
 - \rightarrow Ausscheidungen sind amorph
- 20 30 % geringere Si-Dichte des amorphen SiC_x im Vergleich zu c Si
 - \rightarrow laterale Druckspannungen auf Umgebung (Relaxation in vertikaler Richtung)
- Abbau der Kohlenstoffübersättigung in kristallinen Gebieten
 - \rightarrow Diffusion von Kohlenstoff in amorphe Gebiete
- Druckspannungen

 \rightarrow spannungsunterstützte Amorphisierung zwischen zwei amorphen

Ausscheidungen

Simulation

Simulation bis 300 *nm* Tiefe Simulation über den gesamten Implantationsbereich Herstellung breiter Bereiche mit lamellarer Struktur

(日)

Überblick

- Einführung und Grundlagen
 - Einführung
 - Ion-Festkörper-Wechselwirkung
 - Die Monte-Carlo-Simulation TRIM

2 Experimentelle Befunde und Modell

- Experimentelle Befunde
- Modell

Simulation und Ergebnisse

- Simulation
- Simulation bis 300 nm Tiefe
- Simulation über den gesamten Implantationsbereich
- Herstellung breiter Bereiche mit lamellarer Struktur

Zusammenfassung und Ausblick

- Zusammenfassung
- Ausblick

Simulation

Simulation bis 300 *nm* Tiefe Simulation über den gesamten Implantationsbereich Herstellung breiter Bereiche mit lamellarer Struktur

Simulation

Name

Nano Lamellar Selbstorganisationsprozess

Grober Ablauf

- Amorphisierung/Rekristallisation
- Kohlenstoffeinbau
- Diffusion/Sputtern

Versionen

- Version 1 Simulation bis 300 nm Tiefe
- Version 2 Simulation über den gesamten Implantationsbereich

Unterteilung des Targets

< ロ > < 同 > < 回 > < 三

Simulation

Simulation bis 300 nm Tiefe Simulation über den gesamten Implantationsbereich Herstellung breiter Bereiche mit lamellarer Struktur

Image: A math a math

Simulation Statistik von Stoßprozessen

Simulation

Simulation bis 300 nm Tiefe Simulation über den gesamten Implantationsbereich Herstellung breiter Bereiche mit lamellarer Struktur

Simulation Statistik von Stoßprozessen

 \Rightarrow Durchschnittliche Anzahl der Stöße der Ionen und Energieabgabe

 \Rightarrow Mittlere Würfel-Trefferzahl eines Ions

Simulation Simulation bis 300 nm Tiefe Simulation über den gesamten Implantationsbereich Herstellung breiter Bereiche mit lamellarer Struktur

Simulation Algorithmus - Amorphisierung/Rekristallisation

Amorphisierungswahrscheinlichkeit

$$p_{c \rightarrow a}(\vec{r}) = p_b + p_c c_C(\vec{r}) +$$

$$\sum$$

$$\frac{p_s c_C(r')}{(r-r')^2}$$

(日)

amorphe Nachbarn

- ballistische Amorphisierung
- kohlenstoffinduzierte Amorphisierung
- spannungsuntertützte Amorphisierung

Simulation Simulation bis 300 nm Tiefe Simulation über den gesamten Implantationsbereich Herstellung breiter Bereiche mit lamellarer Struktur

Simulation Algorithmus - Amorphisierung/Rekristallisation

Amorphisierungswahrscheinlichkeit

$$p_{c \rightarrow a}(\vec{r}) = p_b + p_c c_c(\vec{r}) +$$

$$\frac{p_s c_C(r')}{(r-r')^2}$$

(日)

amorphe Nachbarn

• ballistische Amorphisierung

- kohlenstoffinduzierte Amorphisierung
- spannungsuntertützte Amorphisierung

Simulation Simulation bis 300 nm Tiefe Simulation über den gesamten Implantationsbereich Herstellung breiter Bereiche mit lamellarer Struktur

Simulation Algorithmus - Amorphisierung/Rekristallisation

Amorphisierungswahrscheinlichkeit

$$p_{c \to a}(\vec{r}) = p_b + p_c c_c(\vec{r}) + p_c$$

$$\sum_{\text{orphe Nachharn}} \frac{p_s}{(r)}$$

$$\frac{p_s c_C(r')}{(r-r')^2}$$

(日)

*

- ballistische Amorphisierung
- kohlenstoffinduzierte Amorphisierung
- spannungsuntertützte Amorphisierung

Simulation

Simulation Algorithmus - Amorphisierung/Rekristallisation

Amorphisierungswahrscheinlichkeit

$$p_{c \rightarrow a}(\vec{r}) = p_b + p_c c_C(\vec{r}) +$$

$$\sum_{\text{amorphe Nachbarn}} \frac{p_s}{(r)}$$

- ballistische Amorphisierung
- kohlenstoffinduzierte Amorphisierung
- spannungsuntertützte Amorphisierung

Simulation Simulation bis 300 nm Tiefe Simulation über den gesamten Implantationsbereich Herstellung breiter Bereiche mit lamellarer Struktur

イロト イボト イヨト イヨ

Simulation Algorithmus - Amorphisierung/Rekristallsiation

Rekristallisationswahrscheinlichkeit

$$\boldsymbol{p}_{\boldsymbol{a}\to\boldsymbol{c}}(\vec{r}) = (1 - p_{c\to a}(\vec{r})) \left(1 - \frac{\sum_{\text{direkte Nachbarn}} \delta(\vec{r'})}{6}\right)$$

mit

 $\delta(\vec{r}) = \begin{cases} 1 & \text{wenn Gebiet bei } \vec{r} \text{ amorph} \\ 0 & \text{sonst} \end{cases}$

Simulation Simulation bis 300 nm Tiefe Simulation über den gesamten Implantationsbereich Herstellung breiter Bereiche mit lamellarer Struktur

(日)

Simulation Algorithmus - Amorphisierung/Rekristallsiation

Rekristallisationswahrscheinlichkeit

$$p_{a \to c}(\vec{r}) = (1 - p_{c \to a}(\vec{r})) \left(1 - \frac{\sum_{\text{direkte Nachbarn}} \delta(r')}{6}\right)$$

mit

$$\delta(\vec{r}) = \begin{cases} 1 & \text{wenn Gebiet bei } \vec{r} \text{ amorph} \\ 0 & \text{sonst} \end{cases}$$

Simulation Simulation bis 300 nm Tiefe Simulation über den gesamten Implantationsbereich Herstellung breiter Bereiche mit lamellarer Struktur

Simulation Algorithmus - Amorphisierung/Rekristallsiation

Rekristallisationswahrscheinlichkeit

$$p_{a \to c}(\vec{r}) = (1 - p_{c \to a}(\vec{r})) \left(1 - \frac{\sum_{\text{direkte Nachbarn}} \delta(\vec{r'})}{6}\right)$$

mit

$$\delta(\vec{r}) = \begin{cases} 1 & \text{wenn Gebiet bei } \vec{r} \text{ amorph} \\ 0 & \text{sonst} \end{cases}$$

Simulation Simulation bis 300 nm Tiefe Simulation über den gesamten Implantationsbereich Herstellung breiter Bereiche mit Iamellarer Struktur

イロト イボト イヨト イヨ

Simulation Algorithmus - Amorphisierung/Rekristallisation

Stoßkoordinaten

- x, y gleichverteilt
- z entsprechend nuklearer Bremskraft

- Auswürfeln der Stoßkoordinaten
- Berechnung von $p_{c \to a}$ bzw. $p_{a \to c}$
- $\bullet \ \ Zufallszahl \rightarrow Amorphisierung/Rekristallisation$
- Wiederholung für mittlere Anzahl der Treffer des Ions

Simulation Simulation bis 300 nm Tiefe Simulation über den gesamten Implantationsbereich Herstellung breiter Bereiche mit Iamellarer Struktur

(日) (同) (日) (日)

Simulation Algorithmus - Amorphisierung/Rekristallisation

Stoßkoordinaten

- x, y gleichverteilt
- z entsprechend nuklearer Bremskraft

- Auswürfeln der Stoßkoordinaten
- Berechnung von $p_{c \to a}$ bzw. $p_{a \to c}$
- Zufallszahl \rightarrow Amorphisierung/Rekristallisation
- Wiederholung für mittlere Anzahl der Treffer des Ions

Simulation Simulation bis 300 nm Tiefe Simulation über den gesamten Implantationsbereich Herstellung breiter Bereiche mit Iamellarer Struktur

Simulation Algorithmus - Amorphisierung/Rekristallisation

Stoßkoordinaten

- x, y gleichverteilt
- z entsprechend nuklearer Bremskraft

- Auswürfeln der Stoßkoordinaten
- Berechnung von $p_{c \rightarrow a}$ bzw. $p_{a \rightarrow c}$
- Zufallszahl → Amorphisierung/Rekristallisation
- Wiederholung für mittlere Anzahl der Treffer des lons

Simulation Simulation bis 300 nm Tiefe Simulation über den gesamten Implantationsbereich Herstellung breiter Bereiche mit Iamellarer Struktur

< ロ > < 同 > < 三 > < 三 >

Simulation Algorithmus - Amorphisierung/Rekristallisation

Stoßkoordinaten

- x, y gleichverteilt
- z entsprechend nuklearer Bremskraft

- Auswürfeln der Stoßkoordinaten
- Berechnung von $p_{c \rightarrow a}$ bzw. $p_{a \rightarrow c}$
- $\bullet \ \ Zufallszahl \rightarrow Amorphisierung/Rekristallisation$
- Wiederholung für mittlere Anzahl der Treffer des Ions

Simulation Simulation bis 300 nm Tiefe Simulation über den gesamten Implantationsbereich Herstellung breiter Bereiche mit Iamellarer Struktur

< ロ > < 同 > < 三 > < 三

Simulation Algorithmus - Amorphisierung/Rekristallisation

Stoßkoordinaten

- x, y gleichverteilt
- z entsprechend nuklearer Bremskraft

- Auswürfeln der Stoßkoordinaten
- Berechnung von $p_{c \rightarrow a}$ bzw. $p_{a \rightarrow c}$
- $\bullet \ \ Zufallszahl \rightarrow Amorphisierung/Rekristallisation$
- Wiederholung für mittlere Anzahl der Treffer des Ions

Simulation Simulation bis 300 nm Tiefe Simulation über den gesamten Implantationsbereich Herstellung breiter Bereiche mit lamellarer Struktur

Simulation Algorithmus - Kohlenstoffeinbau

Koordinaten für Kohlenstoffeinbau

- x, y gleichverteilt
- z entsprechend Implantationsprofil

- Auswürfeln der Koordinaten für Kohlenstoffeinbau
- Lokale Erhöhung der Anzahl der Kohlenstoffatome

Simulation Simulation bis 300 nm Tiefe Simulation über den gesamten Implantationsbereich Herstellung breiter Bereiche mit lamellarer Struktur

• • • • • • • • • • • •

Simulation Algorithmus - Kohlenstoffeinbau

Koordinaten für Kohlenstoffeinbau

- x, y gleichverteilt
- z entsprechend Implantationsprofil

Ablauf

• Auswürfeln der Koordinaten für Kohlenstoffeinbau

• Lokale Erhöhung der Anzahl der Kohlenstoffatome

Simulation Simulation bis 300 nm Tiefe Simulation über den gesamten Implantationsbereich Herstellung breiter Bereiche mit lamellarer Struktur

(日)

Simulation Algorithmus - Kohlenstoffeinbau

Koordinaten für Kohlenstoffeinbau

- x, y gleichverteilt
- z entsprechend Implantationsprofil

- Auswürfeln der Koordinaten für Kohlenstoffeinbau
- Lokale Erhöhung der Anzahl der Kohlenstoffatome

Simulation Simulation bis 300 nm Tiefe Simulation über den gesamten Implantationsbereich Herstellung breiter Bereiche mit lamellarer Struktur

< ロ > < 同 > < 三 > < 三 >

Simulation Algorithmus - Diffusion/Sputtern

Ablauf der Diffusion alle d_v Schritte

- Gehe alle Zellen durch
- Wenn Zelle amorph
 - Gehe alle Nachbarzellen durch
 - Wenn Nachbarzelle kristallin
 - \Rightarrow Transferiere den Anteil d_r des Kohlenstoffs

- Kopiere Inhalt von Ebene *i* nach Ebene *i* 1 *i* = 2, 3, ..., *Z* – 1, *Z*
- Setze Status jedes Volumens in Ebene Z kristallin
- Setze den Kohlenstoff jedes Volumens in Ebene Z auf Null

Simulation Simulation bis 300 nm Tiefe Simulation über den gesamten Implantationsbereich Herstellung breiter Bereiche mit Iamellarer Struktur

< ロ > < 同 > < 三 > < 三 >

Simulation Algorithmus - Diffusion/Sputtern

Ablauf der Diffusion alle d_v Schritte

• Gehe alle Zellen durch

- Wenn Zelle amorph
 - Gehe alle Nachbarzellen durch
 - Wenn Nachbarzelle kristallin
 - \Rightarrow Transferiere den Anteil d_r des Kohlenstoffs

- Kopiere Inhalt von Ebene *i* nach Ebene *i* 1 *i* = 2, 3, ..., *Z* - 1, *Z*
- Setze Status jedes Volumens in Ebene Z kristallin
- Setze den Kohlenstoff jedes Volumens in Ebene Z auf Null

Simulation Simulation bis 300 nm Tiefe Simulation über den gesamten Implantationsbereich Herstellung breiter Bereiche mit Iamellarer Struktur

< ロ > < 同 > < 三 > < 三 >

Simulation Algorithmus - Diffusion/Sputtern

Ablauf der Diffusion alle d_v Schritte

- Gehe alle Zellen durch
- Wenn Zelle amorph
 - Gehe alle Nachbarzellen durch
 - Wenn Nachbarzelle kristallin
 - \Rightarrow Transferiere den Anteil d_r des Kohlenstoffs

- Kopiere Inhalt von Ebene *i* nach Ebene *i* 1 *i* = 2, 3, ..., *Z* - 1, *Z*
- Setze Status jedes Volumens in Ebene Z kristallin
- Setze den Kohlenstoff jedes Volumens in Ebene Z auf Null

Simulation Simulation bis 300 nm Tiefe Simulation über den gesamten Implantationsbereich Herstellung breiter Bereiche mit Iamellarer Struktur

< ロ > < 同 > < 三 > < 三 >

Simulation Algorithmus - Diffusion/Sputtern

Ablauf der Diffusion alle d_v Schritte

- Gehe alle Zellen durch
- Wenn Zelle amorph
 - Gehe alle Nachbarzellen durch
 - Wenn Nachbarzelle kristallin
 - \Rightarrow Transferiere den Anteil d_r des Kohlenstoffs

- Kopiere Inhalt von Ebene *i* nach Ebene *i* 1 *i* = 2, 3, ..., *Z* - 1, *Z*
- Setze Status jedes Volumens in Ebene Z kristallin
- Setze den Kohlenstoff jedes Volumens in Ebene Z auf Null

Simulation Simulation bis 300 nm Tiefe Simulation über den gesamten Implantationsbereich Herstellung breiter Bereiche mit Iamellarer Struktur

< ロ > < 同 > < 三 > < 三 >

Simulation Algorithmus - Diffusion/Sputtern

Ablauf der Diffusion alle d_v Schritte

- Gehe alle Zellen durch
- Wenn Zelle amorph
 - Gehe alle Nachbarzellen durch
 - Wenn Nachbarzelle kristallin

 \Rightarrow Transferiere den Anteil d_r des Kohlenstoffs

- Kopiere Inhalt von Ebene *i* nach Ebene *i* 1 *i* = 2, 3, ..., *Z* - 1, *Z*
- Setze Status jedes Volumens in Ebene Z kristallin
- Setze den Kohlenstoff jedes Volumens in Ebene Z auf Null

Simulation Simulation bis 300 nm Tiefe Simulation über den gesamten Implantationsbereich Herstellung breiter Bereiche mit Iamellarer Struktur

< ロ > < 同 > < 三 > < 三 >

Simulation Algorithmus - Diffusion/Sputtern

Ablauf der Diffusion alle d_v Schritte

- Gehe alle Zellen durch
- Wenn Zelle amorph
 - Gehe alle Nachbarzellen durch
 - Wenn Nachbarzelle kristallin
 - \Rightarrow Transferiere den Anteil d_r des Kohlenstoffs

- Kopiere Inhalt von Ebene *i* nach Ebene *i* 1 *i* = 2, 3, ..., *Z* - 1, *Z*
- Setze Status jedes Volumens in Ebene Z kristallin
- Setze den Kohlenstoff jedes Volumens in Ebene Z auf Null

Simulation Simulation bis 300 nm Tiefe Simulation über den gesamten Implantationsbereich Herstellung breiter Bereiche mit Iamellarer Struktur

< ロ > < 同 > < 三 > < 三 >

Simulation Algorithmus - Diffusion/Sputtern

Ablauf der Diffusion alle d_v Schritte

- Gehe alle Zellen durch
- Wenn Zelle amorph
 - Gehe alle Nachbarzellen durch
 - Wenn Nachbarzelle kristallin
 - \Rightarrow Transferiere den Anteil d_r des Kohlenstoffs

- Kopiere Inhalt von Ebene *i* nach Ebene *i* 1 *i* = 2, 3, ..., *Z* – 1, *Z*
- Setze Status jedes Volumens in Ebene Z kristallin
- Setze den Kohlenstoff jedes Volumens in Ebene Z auf Null

Simulation Simulation bis 300 nm Tiefe Simulation über den gesamten Implantationsbereich Herstellung breiter Bereiche mit Iamellarer Struktur

< ロ > < 同 > < 三 > < 三 >

Simulation Algorithmus - Diffusion/Sputtern

Ablauf der Diffusion alle d_v Schritte

- Gehe alle Zellen durch
- Wenn Zelle amorph
 - Gehe alle Nachbarzellen durch
 - Wenn Nachbarzelle kristallin
 - \Rightarrow Transferiere den Anteil d_r des Kohlenstoffs

- Kopiere Inhalt von Ebene i nach Ebene i − 1
 i = 2, 3, ..., Z − 1, Z
- Setze Status jedes Volumens in Ebene Z kristallin
- Setze den Kohlenstoff jedes Volumens in Ebene Z auf Null

Simulation Simulation bis 300 nm Tiefe Simulation über den gesamten Implantationsbereich Herstellung breiter Bereiche mit Iamellarer Struktur

イロン イロン イヨン イヨン

Simulation Algorithmus - Diffusion/Sputtern

Ablauf der Diffusion alle d_v Schritte

- Gehe alle Zellen durch
- Wenn Zelle amorph
 - Gehe alle Nachbarzellen durch
 - Wenn Nachbarzelle kristallin
 - \Rightarrow Transferiere den Anteil d_r des Kohlenstoffs

- Kopiere Inhalt von Ebene i nach Ebene i − 1
 i = 2, 3, ..., Z − 1, Z
- Setze Status jedes Volumens in Ebene Z kristallin
- Setze den Kohlenstoff jedes Volumens in Ebene Z auf Null

Simulation Simulation bis 300 nm Tiefe Simulation über den gesamten Implantationsbereich Herstellung breiter Bereiche mit Iamellarer Struktur

< ロ > < 同 > < 三 > < 三 >

Simulation Algorithmus - Diffusion/Sputtern

Ablauf der Diffusion alle d_v Schritte

- Gehe alle Zellen durch
- Wenn Zelle amorph
 - Gehe alle Nachbarzellen durch
 - Wenn Nachbarzelle kristallin
 - \Rightarrow Transferiere den Anteil d_r des Kohlenstoffs

- Kopiere Inhalt von Ebene i nach Ebene i − 1
 i = 2, 3, ..., Z − 1, Z
- Setze Status jedes Volumens in Ebene Z kristallin
- Setze den Kohlenstoff jedes Volumens in Ebene Z auf Null

Simulation Simulation bis 300 nm Tiefe Simulation über den gesamten Implantationsbereicl Herstellung breiter Bereiche mit lamellarer Struktur

(日)

Überblick

- Einführung und Grundlagen
 - Einführung
 - Ion-Festkörper-Wechselwirkung
 - Die Monte-Carlo-Simulation TRIM
- 2 Experimentelle Befunde und Modell
 - Experimentelle Befunde
 - Modell
- Simulation und Ergebnisse
 - Simulation
 - Simulation bis 300 nm Tiefe
 - Simulation über den gesamten Implantationsbereich
 - Herstellung breiter Bereiche mit lamellarer Struktur
 - Zusammenfassung und Ausblick
 - Zusammenfassung
 - Ausblick

Simulation Simulation bis 300 nm Tiefe Simulation über den gesamten Implantationsbereic Herstellung breiter Bereiche mit Jamellarer Struktu

・ロト ・回ト ・ヨト ・ヨト

3

Ergebnisse Simulation, Version 1

Eigenschaften

- Tiefenbereich 0 300 nm
- Linear genähertes Implantations- und Bremskraftprofil
- Ein Würfel-Treffer pro Ion
- Rekristallisationswahrscheinlichkeit unabhängig von direkter Nachbarschaft
- Kein Sputtervorgang

Simulation Simulation bis 300 nm Tiefe Simulation über den gesamten Implantationsbereicl Herstellung breiter Bereiche mit lamellarer Struktur

< ロ > < 同 > < 回 > < 三

Ergebnisse Simulation, Version 1

Eigenschaften

- Tiefenbereich 0 300 nm
- Linear genähertes Implantations- und Bremskraftprofil
- Ein Würfel-Treffer pro Ion
- Rekristallisationswahrscheinlichkeit unabhängig von direkter Nachbarschaft
- Kein Sputtervorgang

Simulation Simulation bis 300 nm Tiefe Simulation über den gesamten Implantationsbereicl Herstellung breiter Bereiche mit lamellarer Struktur

< ロ > < 同 > < 回 > < 三

Ergebnisse Simulation, Version 1

Eigenschaften

- Tiefenbereich 0 300 nm
- Linear genähertes Implantations- und Bremskraftprofil
- Ein Würfel-Treffer pro Ion
- Rekristallisationswahrscheinlichkeit unabhängig von direkter Nachbarschaft
- Kein Sputtervorgang
Simulation Simulation bis 300 nm Tiefe Simulation über den gesamten Implantationsbereicl Herstellung breiter Bereiche mit lamellarer Struktur

(日)

Ergebnisse Simulation, Version 1

- Tiefenbereich 0 300 nm
- Linear genähertes Implantations- und Bremskraftprofil
- Ein Würfel-Treffer pro Ion
- Rekristallisationswahrscheinlichkeit unabhängig von direkter Nachbarschaft
- Kein Sputtervorgang

Simulation Simulation bis 300 nm Tiefe Simulation über den gesamten Implantationsbereicl Herstellung breiter Bereiche mit lamellarer Struktur

Ergebnisse Simulation, Version 1

- Tiefenbereich 0 300 nm
- Linear genähertes Implantations- und Bremskraftprofil
- Ein Würfel-Treffer pro Ion
- Rekristallisationswahrscheinlichkeit unabhängig von direkter Nachbarschaft
- Kein Sputtervorgang

Simulation Simulation bis 300 nm Tiefe Simulation über den gesamten Implantationsbereicl Herstellung breiter Bereiche mit lamellarer Struktur

• • • • • • • • • • • •

Ergebnisse Simulation, Version 1

- Tiefenbereich 0 300 nm
- Linear genähertes Implantations- und Bremskraftprofil
- Ein Würfel-Treffer pro Ion
- Rekristallisationswahrscheinlichkeit unabhängig von direkter Nachbarschaft
- Kein Sputtervorgang

Simulation Simulation bis 300 nm Tiefe Simulation über den gesamten Implantationsbere Harstallung breiter, Bereiche mit Immellarer Struk

< ロ > < 同 > < 回 > < 三

Ergebnisse Erste Simulationen, $s = 3 \times 10^5$, $p_c = 0$

- \Rightarrow Abbruchradius r = 5
- \Rightarrow große Anzahl an Durchläufen o 2 bzw. 3 imes 10^7
- \Rightarrow kleinere Simulationsparameter p_b , p_c und p_s

Simulation Simulation bis 300 nm Tiefe Simulation über den gesamten Implantationsbere Harstallung breiter Bereiche mit Immellarer Struk

< ロ > < 同 > < 回 > < 三

Ergebnisse Erste Simulationen, $s = 3 \times 10^5$, $p_c = 0$

\Rightarrow Abbruchradius r = 5

 \Rightarrow große Anzahl an Durchläufen o 2 bzw. 3 imes 10^{7}

 \Rightarrow kleinere Simulationsparameter p_b , p_c und p_s

Simulation Simulation bis 300 nm Tiefe Simulation über den gesamten Implantationsbere Harstallung breiter, Bereiche mit Immellarer Struk

(日)

Ergebnisse Erste Simulationen, $s = 3 \times 10^5$, $p_c = 0$

- \Rightarrow Abbruchradius r = 5
- \Rightarrow große Anzahl an Durchläufen \rightarrow 2 bzw. 3 \times 10⁷
- \Rightarrow kleinere Simulationsparameter p_b , p_c und p_s

Simulation Simulation bis 300 nm Tiefe Simulation über den gesamten Implantationsbereich Herstellung breiter Bereiche mit lamellarer Struktur

Ergebnisse Vergleich mit TEM-Aufnahme, $p_b = 0$, $p_c = 0.0001$, $p_s = 0.003$, $d_v = 10$, $d_r = 0.5$

Lamellare Strukturen

Simulation **XTEM** a) b) 100 Tiefe [nm] 200 300 4,3 x 10¹⁷ cm⁻² 3 x 10⁷ Schritte

F. Zirkelbach Vorstellung der Diplomarbeit

Simulation Simulation bis 300 nm Tiefe Simulation über den gesamten Implantationsbereic Herstellung breiter Bereiche mit Jamellarer Struktu

Ergebnisse Einfluss der Diffusionsrate d_r

Simulation Simulation bis 300 nm Tiefe Simulation über den gesamten Implantationsbereich Herstellung breiter Bereiche mit lamellarer Struktur

< ロ > < 同 > < 回 > < 三

Ergebnisse Einfluss der Diffusionsgeschwindigkeit d_v

 $p_b = 0, \ p_c = 0.0001, \ p_s = 0.003, \ d_r = 0.5$

Simulation Simulation bis 300 nm Tiefe Simulation über den gesamten Implantationsbereicl Herstellung breiter Bereiche mit lamellarer Struktur

(日) (同) (日) (日)

Ergebnisse Einfluss der Druckspannung

Simulation Simulation bis 300 nm Tiefe Simulation über den gesamten Implantationsbere Harstallung breiter, Bereiche mit Inmellarer Struk

< ロ > < 回 > < 回 > < 回 > < 回 >

Ergebnisse Kohlenstoffverteilung

Simulation Simulation bis 300 nm Tiefe Simulation über den gesamten Implantationsbereich Herstellung breiter Bereiche mit Iamellarer Struktur

Ergebnisse Zusammenfassung, Version 1

- Modell/Simulation reproduziert die Bildung geordneter Lamellenstrukturen
- Bildungsprozess nachvollziehbar durch die Simulation
- hohe Anzahl an Simulationsdurchläufen, kleine Amorphisierungswahrscheinlichkeiten
- Diffusion essentiell, insbesondere die Diffusion in z-Richtung
- hoher Beitrag durch kohlenstoffinduzierte Amorphisierung
- Kohlenstoffverteilung im Einklang mit EFTEM-Aufnahme

Simulation Simulation bis 300 nm Tiefe Simulation über den gesamten Implantationsbereich Herstellung breiter Bereiche mit Iamellarer Struktur

• • • • • • • • • • • •

Überblick

- Einführung und Grundlagen
 - Einführung
 - Ion-Festkörper-Wechselwirkung
 - Die Monte-Carlo-Simulation TRIM

2 Experimentelle Befunde und Modell

- Experimentelle Befunde
- Modell

3 Simulation und Ergebnisse

- Simulation
- Simulation bis 300 nm Tiefe
- Simulation über den gesamten Implantationsbereich
- Herstellung breiter Bereiche mit lamellarer Struktur
- Zusammenfassung und Ausblick
 - Zusammenfassung
 - Ausblick

Simulation Simulation bis 300 nm Tiefe Simulation über den gesamten Implantationsbereich Herstellung breiter Bereiche mit lamellarer Struktur

イロト イヨト イヨト イヨト

3

Ergebnisse Simulation, Version 2

- exaktes TRIM Implantations- und Bremskraftprofil
- mittlere Anzahl Würfel-Treffer pro Ion aus TRIM
- Rekristallisationswahrscheinlichkeit abhängig von direkter Nachbarschaft
- Tiefenbereich 0 700 nm
- Sputtervorgang

Simulation Simulation bis 300 nm Tiefe Simulation über den gesamten Implantationsbereich Herstellung breiter Bereiche mit lamellarer Struktur

(日) (同) (日) (日)

Ergebnisse Simulation, Version 2

- exaktes TRIM Implantations- und Bremskraftprofil
- mittlere Anzahl Würfel-Treffer pro Ion aus TRIM
- Rekristallisationswahrscheinlichkeit abhängig von direkter Nachbarschaft
- Tiefenbereich 0 700 nm
- Sputtervorgang

Simulation Simulation bis 300 nm Tiefe Simulation über den gesamten Implantationsbereich Herstellung breiter Bereiche mit lamellarer Struktur

Ergebnisse Simulation, Version 2

- exaktes TRIM Implantations- und Bremskraftprofil
- mittlere Anzahl Würfel-Treffer pro Ion aus TRIM
- Rekristallisationswahrscheinlichkeit abhängig von direkter Nachbarschaft
- Tiefenbereich 0 700 nm
- Sputtervorgang

Simulation Simulation bis 300 nm Tiefe Simulation über den gesamten Implantationsbereich Herstellung breiter Bereiche mit Iamellarer Struktur

Ergebnisse Simulation, Version 2

- exaktes TRIM Implantations- und Bremskraftprofil
- mittlere Anzahl Würfel-Treffer pro Ion aus TRIM
- Rekristallisationswahrscheinlichkeit abhängig von direkter Nachbarschaft
- Tiefenbereich 0 700 nm
- Sputtervorgang

Simulation Simulation bis 300 nm Tiefe Simulation über den gesamten Implantationsbereich Herstellung breiter Bereiche mit Iamellarer Struktur

Ergebnisse Simulation, Version 2

- exaktes TRIM Implantations- und Bremskraftprofil
- mittlere Anzahl Würfel-Treffer pro Ion aus TRIM
- Rekristallisationswahrscheinlichkeit abhängig von direkter Nachbarschaft
- Tiefenbereich 0 700 nm
- Sputtervorgang

Simulation Simulation bis 300 nm Tiefe Simulation über den gesamten Implantationsbereich Herstellung breiter Bereiche mit Iamellarer Struktur

< ロ > < 同 > < 三 > < 三

Ergebnisse Simulation, Version 2

- exaktes TRIM Implantations- und Bremskraftprofil
- mittlere Anzahl Würfel-Treffer pro Ion aus TRIM
- Rekristallisationswahrscheinlichkeit abhängig von direkter Nachbarschaft
- Tiefenbereich 0 700 nm
- Sputtervorgang

Simulation Simulation bis 300 nm Tiefe Simulation über den gesamten Implantationsbereich Herstellung breiter Bereiche mit Iamellarer Struktur

Ergebnisse amorphe Phasen in Abhängigkeit der Dosis

Simulation Simulation bis 300 nm Tiefe Simulation über den gesamten Implantationsbereich Herstellung breiter Bereiche mit Iamellarer Struktur

イロト イボト イヨト イヨト

Ergebnisse amorphe Phasen in Abhängigkeit der Dosis

 $D=3,3x10^{17} cm^2 s=120x10^6 D=4,3x10^{17} cm^2 s=158x10^6$

Simulation Simulation bis 300 nm Tiefe Simulation über den gesamten Implantationsbereich Herstellung breiter Bereiche mit Iamellarer Struktur

Ergebnisse amorphe Phasen in Abhängigkeit der Dosis

Simulation Simulation bis 300 nm Tiefe Simulation über den gesamten Implantationsbereich Herstellung breiter Bereiche mit Iamellarer Struktur

Ergebnisse Kohlenstoffverteilung

Simulation Simulation bis 300 nm Tiefe Simulation über den gesamten Implantationsbereich Herstellung breiter Bereiche mit Iamellarer Struktur

イロト イボト イヨト イヨト

Ergebnisse Kohlenstoffverteilung an den Grenzflächen zur amorphen Schicht

-	•
Exner	ument
Exp ci	mene

Dosis	C-Konzentration an	C-Konzentration an
	vorderer Grenzfläche	hinterer Grenzfläche
$2,1 imes 10^{17} cm^{-2}$	16 at.%	13 at.%
$3,3 imes 10^{17} cm^{-2}$	13 at.%	14 at.%
$3,4 imes 10^{17} cm^{-2}$	14 at.%	12 at.%

Simulation

Durchläufe äquivalente Dosis	C-Konzentration an	C-Konzentration an	
	vorderer Grenzfläche	hinterer Grenzfläche	
$80 imes10^{6}$	$2,16 imes 10^{17} cm^{-2}$	15,21 <i>at</i> .%	16,62 <i>at</i> .%
$120 imes 10^6$	$3,25 imes 10^{17}cm^{-2}$	15,80 <i>at</i> .%	17,67 at.%
$159 imes10^{6}$	$4,3 imes 10^{17}cm^{-2}$	17,28 at.%	17,73 at.%

Simulation Simulation bis 300 nm Tiefe Simulation über den gesamten Implantationsbereich Herstellung breiter Bereiche mit Iamellarer Struktur

Ergebnisse Variation der Simulationsparameter

F. Zirkelbach

Simulation Simulation bis 300 nm Tiefe Simulation über den gesamten Implantationsbereich Herstellung breiter Bereiche mit Iamellarer Struktur

Ergebnisse Zusammenfassung, Version 2

- Modell/Simulation reproduziert die dosisabhängige Bildung der amorphen Phasen
- Gute Übereinstimmung zwischen Experiment und Simulation (bis auf 30 *nm*-Shift)
- Entwicklung der Grenzflächen und lamellaren Ausscheidungen reproduzierbar
- Übereinstimmung der Kohlenstoffkonzentration an den Grenzflächen
- Detaillierte Untersuchungen zur Kohlenstoffkonzentration und zur genauen Struktur der Ausscheidungen
- Variation der Simulationparameter
 - \Rightarrow Bildungsprozess der amorphen Phasen nachvollziehbar

Simulation Simulation bis 300 nm Tiefe Simulation über den gesamten Implantationsbereich Herstellung breiter Bereiche mit Iamellarer Struktur

• • • • • • • • • • • •

Überblick

- Einführung und Grundlagen
 - Einführung
 - Ion-Festkörper-Wechselwirkung
 - Die Monte-Carlo-Simulation TRIM

2 Experimentelle Befunde und Modell

- Experimentelle Befunde
- Modell

3 Simulation und Ergebnisse

- Simulation
- Simulation bis 300 nm Tiefe
- Simulation über den gesamten Implantationsbereich
- Herstellung breiter Bereiche mit lamellarer Struktur
- Zusammenfassung und Ausblick
 - Zusammenfassung
 - Ausblick

Simulation Simulation bis 300 nm Tiefe Simulation über den gesamten Implantationsbereich Herstellung breiter Bereiche mit Iamellarer Struktur

Ergebnisse Herstellung breiter lamellarer Bereiche durch einen zweiten Implantationsschritt

Idee

- Grundlage: 180 keV C⁺-implantiertes Si-Target
- Target durchgehend kristallin (Implantation bei höherer Temperatur)
- Bestrahlung mit 2 MeV C^+ -lonen bei $T = 150 \,^{\circ}C$

Simulation Simulation bis 300 nm Tiefe Simulation über den gesamten Implantationsbereich Herstellung breiter Bereiche mit Iamellarer Struktur

(日)

Ergebnisse Nukleares Brmeskraft- und Implantationsprofil von 2 MeV $C^+ \rightarrow Si$

Simulation Simulation bis 300 nm Tiefe Simulation über den gesamten Implantationsbereich Herstellung breiter Bereiche mit Iamellarer Struktur

(日) (同) (日) (日)

Ergebnisse Ergebnisse des zweiten Implantationsschrittes mit 2 *MeV C*⁺-Ionen

Grundlage: $4.3 \times 10^{17} cm^{-2}$ 180 keV C⁺-Implantation

F. Zirkelbach Vorstellung der Diplomarbeit

Simulation Simulation bis 300 nm Tiefe Simulation über den gesamten Implantationsbereich Herstellung breiter Bereiche mit Iamellarer Struktur

Ergebnisse Ergebnisse des zweiten Implantationsschrittes mit 2 *MeV C*⁺-Ionen

Grundlage: $1.1 \times 10^{17} cm^{-2}$ 180 keV C⁺-Implantation

F. Zirkelbach Vorstellung der Diplomarbeit

Simulation Simulation bis 300 nm Tiefe Simulation über den gesamten Implantationsbereich Herstellung breiter Bereiche mit Iamellarer Struktur

< 47 > < 3

Ergebnisse Herstellung noch breiterer lamellarer Bereiche durch Mehrfachimplantation

Simulation Simulation bis 300 nm Tiefe Simulation über den gesamten Implantationsbereich Herstellung breiter Bereiche mit lamellarer Struktur

Ergebnisse Ergebniss der 2 *MeV C*⁺-Bestrahlung

F. Zirkelbach

900

Simulation Simulation bis 300 nm Tiefe Simulation über den gesamten Implantationsbereich Herstellung breiter Bereiche mit Iamellarer Struktur

Ergebnisse Ergebniss der 2 *MeV C*⁺-Bestrahlung

Zusammenfassung Ausblick

Überblick

- Einführung und Grundlagen
 - Einführung
 - Ion-Festkörper-Wechselwirkung
 - Die Monte-Carlo-Simulation TRIM

2 Experimentelle Befunde und Modell

- Experimentelle Befunde
- Modell

3 Simulation und Ergebnisse

- Simulation
- Simulation bis 300 nm Tiefe
- Simulation über den gesamten Implantationsbereich
- Herstellung breiter Bereiche mit lamellarer Struktur

Zusammenfassung und Ausblick

- Zusammenfassung
- Ausblick

→ < ∃ →</p>

Zusammenfassung Ausblick

Zusammenfassung

- Experimentell beobachtete selbstorganisierte Anordnung amorpher *SiC_x*-Ausscheidungen
- Modell zur Beschreibung des Selbstorganisationsvorganges
- Implementierung in einen Monte-Carlo-Simulationscode
- Ergebnisse der Simulation reproduzieren die experimentellen Befunde
- Detaillierte Untersuchungen zur Kohlenstoffkonzentration und zur Struktur der Ausscheidungen möglich
- Vorhersage zur Herstellung großer Bereiche lamellar geordneter Strukturen
Zusammenfassung Ausblick

Zusammenfassung

- Experimentell beobachtete selbstorganisierte Anordnung amorpher *SiC_x*-Ausscheidungen
- Modell zur Beschreibung des Selbstorganisationsvorganges
- Implementierung in einen Monte-Carlo-Simulationscode
- Ergebnisse der Simulation reproduzieren die experimentellen Befunde
- Detaillierte Untersuchungen zur Kohlenstoffkonzentration und zur Struktur der Ausscheidungen möglich
- Vorhersage zur Herstellung großer Bereiche lamellar geordneter Strukturen

Zusammenfassung Ausblick

Zusammenfassung

- Experimentell beobachtete selbstorganisierte Anordnung amorpher *SiC_x*-Ausscheidungen
- Modell zur Beschreibung des Selbstorganisationsvorganges
- Implementierung in einen Monte-Carlo-Simulationscode
- Ergebnisse der Simulation reproduzieren die experimentellen Befunde
- Detaillierte Untersuchungen zur Kohlenstoffkonzentration und zur Struktur der Ausscheidungen möglich
- Vorhersage zur Herstellung großer Bereiche lamellar geordneter Strukturen

Zusammenfassung Ausblick

Zusammenfassung

- Experimentell beobachtete selbstorganisierte Anordnung amorpher *SiC_x*-Ausscheidungen
- Modell zur Beschreibung des Selbstorganisationsvorganges
- Implementierung in einen Monte-Carlo-Simulationscode
- Ergebnisse der Simulation reproduzieren die experimentellen Befunde
- Detaillierte Untersuchungen zur Kohlenstoffkonzentration und zur Struktur der Ausscheidungen möglich
- Vorhersage zur Herstellung großer Bereiche lamellar geordneter Strukturen

< ロ > < 同 > < 三 > < 三 >

Zusammenfassung Ausblick

Zusammenfassung

- Experimentell beobachtete selbstorganisierte Anordnung amorpher *SiC_x*-Ausscheidungen
- Modell zur Beschreibung des Selbstorganisationsvorganges
- Implementierung in einen Monte-Carlo-Simulationscode
- Ergebnisse der Simulation reproduzieren die experimentellen Befunde
- Detaillierte Untersuchungen zur Kohlenstoffkonzentration und zur Struktur der Ausscheidungen möglich
- Vorhersage zur Herstellung großer Bereiche lamellar geordneter Strukturen

< ロ > < 同 > < 三 > < 三 >

Zusammenfassung Ausblick

Zusammenfassung

- Experimentell beobachtete selbstorganisierte Anordnung amorpher *SiC_x*-Ausscheidungen
- Modell zur Beschreibung des Selbstorganisationsvorganges
- Implementierung in einen Monte-Carlo-Simulationscode
- Ergebnisse der Simulation reproduzieren die experimentellen Befunde
- Detaillierte Untersuchungen zur Kohlenstoffkonzentration und zur Struktur der Ausscheidungen möglich
- Vorhersage zur Herstellung großer Bereiche lamellar geordneter Strukturen

< ロ > < 同 > < 三 > < 三 >

Zusammenfassung Ausblick

Zusammenfassung

- Experimentell beobachtete selbstorganisierte Anordnung amorpher *SiC_x*-Ausscheidungen
- Modell zur Beschreibung des Selbstorganisationsvorganges
- Implementierung in einen Monte-Carlo-Simulationscode
- Ergebnisse der Simulation reproduzieren die experimentellen Befunde
- Detaillierte Untersuchungen zur Kohlenstoffkonzentration und zur Struktur der Ausscheidungen möglich
- Vorhersage zur Herstellung großer Bereiche lamellar geordneter Strukturen

Zusammenfassung Ausblick

Überblick

- Einführung und Grundlagen
 - Einführung
 - Ion-Festkörper-Wechselwirkung
 - Die Monte-Carlo-Simulation TRIM

2 Experimentelle Befunde und Modell

- Experimentelle Befunde
- Modell

3 Simulation und Ergebnisse

- Simulation
- Simulation bis 300 nm Tiefe
- Simulation über den gesamten Implantationsbereich
- Herstellung breiter Bereiche mit lamellarer Struktur

Zusammenfassung und Ausblick

- Zusammenfassung
- Ausblick

→ < Ξ → </p>

Zusammenfassung Ausblick

Ausblick

- Simulation: Variation der Ionensorte/Temperatur

 → Abhängigkeit der Simulationsparameter vom Materialsyster
 → Abhängigkeit der Simulationsparameter von der Temperatu
- Experimentell: Überprüfung der Vorhersage

Zusammenfassung Ausblick

Ausblick

- Simulation: Variation der Ionensorte/Temperatur
 - \rightarrow Abhängigkeit der Simulationsparameter vom Materialsystem
 - \rightarrow Abhängigkeit der Simulationsparameter von der Temperatur
- Experimentell: Überprüfung der Vorhersage

(日)

Zusammenfassung Ausblick

Ausblick

- Simulation: Variation der Ionensorte/Temperatur
 - \rightarrow Abhängigkeit der Simulationsparameter vom Materialsystem
 - \rightarrow Abhängigkeit der Simulationsparameter von der Temperatur
- Experimentell: Überprüfung der Vorhersage

→ < Ξ → <</p>

Zusammenfassung Ausblick

Danksagung

- Prof. Dr. Bernd Stritzker
- PD Volker Eyert
- PD Jörg Lindner
- Dipl. Phys. Maik Häberlen
- Dipl. Phys. Ralf Utermann
- EP4 + Diplomanden

(日)