Atomistic simulation study on silicon carbide precipitation in silicon

FRANK ZIRKELBACH

Defense of doctor's thesis

Augsburg, 10.01.2012

PROPERTIES

APPLICATIONS

wide band gap
high electric breakdown field
good electron mobility
high electron saturation drift velocity
high thermal conductivity
hard and mechanically stable
chemically inert
radiation hardness

high-temperature, high power and high-frequency electronic and optoelectronic devices

material suitable for extreme conditions microelectromechanical systems abrasives, cutting tools, heating elements

> first wall reactor material, detectors and electronic devices for space

IBS of epitaxial single crystalline 3C-SiC

• Implantation step 1

Almost stoichiometric dose $| 180 \text{ keV} | 500 \,^{\circ}\text{C} \Rightarrow$ Epitaxial 3C-SiC layer & precipitates

• Implantation step 2

Low remaining amount of dose | 180 keV | $250 \circ \text{C}$ \Rightarrow Destruction/Amorphization of precipitates at layer interface

• Annealing

10 h at 1250 $^{\circ}\mathrm{C}$

 \Rightarrow Homogeneous 3C-SiC layer with sharp interfaces

3C-SiC precipitation not yet fully understood

Supposed precipitation mechanism of SiC in Si

 \Rightarrow dark contrasts

→ Moiré fringes & release of Si self-interstitials

Supposed precipitation mechanism of SiC in Si

Outline

- Introduction / Motivation
- Assumed SiC precipitation mechanisms / Controversy
- Utilized simulation techniques
 - Molecular dynamics (MD) simulations
 - Density functional theory (DFT) calculations
- Simulation results
 - C and Si self-interstitial point defects in silicon
 - Silicon carbide precipitation simulations
- Summary / Conclusion

Utilized computational methods

Molecular dynamics (MD)

System of N particles	$N = 5832 \pm 1$ (Defects), $N = 238328 + 6000$ (Precipitation)
Phase space propagation	Velocity Verlet timestep: 1 fs
Analytical interaction potential	Tersoff-like short-range, bond order potential (Erhart/Albe) $E = \frac{1}{2} \sum_{i \neq j} \mathcal{V}_{ij}, \mathcal{V}_{ij} = f_C(r_{ij}) \left[f_R(r_{ij}) + b_{ij} f_A(r_{ij}) \right]$
Observables: time/ensemble averages	NpT (isothermal-isobaric) \mid Berendsen thermostat/barostat

Density functional theory (DFT)

- Hohenberg-Kohn theorem: $\Psi_0(r_1, r_2, \dots, r_N) = \Psi[n_0(r)], E_0 = E[n_0]$
- Kohn-Sham approach: Single-particle effective theory
- Code: VASP
- Plane wave basis set $| E_{cut} = 300 \, eV$
- Ultrasoft pseudopotential
- Exchange & correlation: GGA
- Brillouin zone sampling: Γ-point
- Supercell: $N = 216 \pm 2$

Point defects & defect migration

Defect structure

- Creation of c-Si simulation volume
 - Periodic boundary conditions
 - T = 0 K, p = 0 bar

Insertion of interstitial C/Si atoms

Defect formation energy

$$E_{\rm f} = E - \sum_i N_i \mu_i$$

Binding energy

$$E_{\rm b} = E_{\rm f}^{\rm comb} - E_{\rm f}^{1^{\rm st}} - E_{\rm f}^{2^{\rm nd}}$$

 $E_{\rm b} < 0$: energetically favorable configuration $E_{\rm b} \rightarrow 0$: non-interacting, isolated defects

C interstitial point defects in silicon

$E_{\rm f} \; [{\rm eV}]$	Т	Н	$\langle 100\rangle$ DB	$\langle 110\rangle$ DB	S	В	C_{sub} & Si_i
VASP	unstable	unstable	3.72	4.16	1.95	4.66	4.17
Erhart/Albe	6.09	9.05^{*}	3.88	5.18	0.75	5.59^{*}	4.43

C interstitial migration — ab initio

C interstitial migration — analytical potential

BC to $[00\overline{1}]$ transition

- Lowermost migration barrier
- $\Delta E \approx 2.2 \,\mathrm{eV}$
- 2.4 times higher than ab initio result
- Different pathway

Transition involving a $\langle 1\,1\,0 \rangle$ configuration

- Bond-centered configuration unstable \rightarrow $C_i \ \langle 1\,1\,0 \rangle \ dumbbell$
- Minimum of the $[0 \ 0 \ \overline{1}]$ to $[0 \ \overline{1} \ 0]$ transition $\rightarrow C_i \ \langle 1 \ 1 \ 0 \rangle \ DB$

- $\Delta E \approx 2.2 \,\mathrm{eV} \& 0.9 \,\mathrm{eV}$
- 2.4 3.4 times higher than ab initio result
- After all: Change of the DB orientation

Drastically overestimated diffusion barrier

Defect combinations — ab inito

$E_{\rm b}~[{\rm eV}]$	1	2	3	4	5	R
$[0\ 0\ \overline{1}]$	-0.08	-1.15	-0.08	0.04	-1.66	-0.19
$[0\ 0\ 1]$	0.34	0.004	-2.05	0.26	-1.53	-0.19
$[0\overline{1}0]$	-2.39	-0.17	-0.10	-0.27	-1.88	-0.05
$[0\ 1\ 0]$	-2.25	-1.90	-2.25	-0.12	-1.38	-0.06
$[\overline{1} \ 0 \ 0]$	-2.39	-0.36	-2.25	-0.12	-1.88	-0.05
$[1\ 0\ 0]$	-2.25	-2.16	-0.10	-0.27	-1.38	-0.06
$\mathrm{C}_{\mathrm{sub}}$	0.26	-0.51	-0.93	-0.15	0.49	-0.05
Vacancy	$-5.39 (\rightarrow C_{sub})$	-0.59	-3.14	-0.54	-0.50	-0.31

Summary of combinations

 $E_{\rm b}$ explainable by stress compensation / increase

Combinations of (100)-type interstitials

[100] at position 1

 $[0\,\overline{1}\,0]$ at position 1

- $\bullet~C_i$ agglomeration energetically favorable
- Most favorable: strong C-C bond However ...
 - \dots high migration barrier (> 4 eV)
 - ... entropy: $4 \times [-2.25]$ versus $2 \times [-2.39]$

 C_{i} agglomeration / no C clustering

Defect combinations — ab inito

Defect combinations of C-Si dimers and vacancies

Combinations of substitutional C and Si self-interstitials

C_{sub} - $\mathrm{Si}_{\mathrm{i}}~\langle 1\,1\,0\rangle$ interaction

- Most favorable: $C_{\rm sub}$ along $\langle 1\,1\,0\rangle$ chain of ${\rm Si}_i$
- Less favorable than ground-state $\mathrm{C_i}~\langle 1\,0\,0\rangle~\mathrm{DB}$
- Interaction drops quickly to zero
 - \rightarrow low capture radius

Transition from the ground state

- Low transition barrier
- Barrier smaller than C_i migration barrier
- Low Si_i migration barrier (0.67 eV) \rightarrow Separation of C_{sub} & Si_i most probable

 C_{sub} & Si_i instead of thermodynamic ground state IBS — process far from equilibrium

Combinations of substitutional C and Si self-interstitials

Silicon carbide precipitation simulations

Procedure

Note

- Amount of C atoms: 6000
 - $(r_{\rm prec} \approx 3.1 \text{ nm}, \text{IBS: } 2\text{--}4 \text{ nm})$
- Simulation volume: 31³ Si unit cells (238328 Si atoms)

Restricted to classical potential caclulations

- \rightarrow Low C diffusion / overestimated barrier
- \rightarrow Consider V_2 and V_3

Silicon carbide precipitation simulations at 450 °C as in IBS

Low C concentration — V_1

 $\mathrm{C_i}~\langle 1\,0\,0\rangle$ dumbbell dominated structure

- Si-C bumbs around $0.19\,\mathrm{nm}$
- C-C peak at 0.31 nm (expected in 3C-SiC): concatenated differently oriented C_i DBs
- Si-Si NN distance stretched to $0.3 \,\mathrm{nm}$

 $\begin{array}{c} \mbox{Formation of C_i dumbbells}\\ \mbox{C atoms separated as expected in $3C$-SiC} \end{array}$

High C concentration — V_2/V_3

- High amount of strongly bound C-C bonds
- Increased defect & damage density
 → Arrangements hard to categorize and trace
- Only short range order observable

Amorphous SiC-like phase

Silicon carbide precipitation simulations at 450 °C as in IBS

Low C concentration — V_1

 $\mathrm{C_i}~\langle 1\,0\,0\rangle$ dumbbell dominated structure

- Si-C bumbs around $0.19\,\mathrm{nm}$
- C-C peak at 0.31 nm (expected in 3C-SiC): concatenated differently oriented C_i DBs
- Si-Si NN distance stretched to $0.3 \,\mathrm{nm}$

 $\begin{array}{c} \mbox{Formation of C_i dumbbells}\\ \mbox{C atoms separated as expected in $3C$-SiC} \end{array}$

High C concentration — V_2/V_3

- High amount of strongly bound C-C bonds
- Increased defect & damage density
 → Arrangements hard to categorize and trace
- Only short range order observable

Amorphous SiC-like phase

Formation of 3C-SiC fails to appear

 V_1 :

Formation of C_i indeed occurs Agllomeration not observed

Amorphous SiC-like structure

 $V_{2,3}$: (not expected at 450 °C) No rearrangement/transition into 3C-SiC

Limitations of MD and short range potentials

Time scale problem of MD

Minimize integration error & precise thermodynamic sampling $\Rightarrow \Delta t \ll (\max \omega)^{-1}, \omega$: vibrational mode

 \Rightarrow <u>Slow</u> phase space propagation

Several local minima separated by large energy barriers

- \Rightarrow Transition event corresponds to a multiple of vibrational periods
- \Rightarrow Phase transition consists of many infrequent transition events

Accelerated methods: Temperature accelerated MD (TAD), self-guided MD ...

Limitations related to the short range potential

Cut-off function limits interaction to next neighbours \Rightarrow Overestimated diffusion barrier (factor: 2.4–3.4)

Potential enhanced slow phase space propagation

Approach to the (twofold) problem

Increased temperature simulations without TAD corrections Accelerated methods or higher time scales exclusively not sufficient! retain proper thermodynamic sampling

IBS

 $3\mathrm{C}\text{-}\mathrm{SiC}$ also observed for higher T

Higher T inside sample

Structural evolution vs. equilibrium properties

Increased temperature simulations — V_1

Si-C bonds:

- Vanishing cut-off artifact (above $1650 \,^{\circ}\text{C}$)
- Structural change: $C_i \langle 1 \, 0 \, 0 \rangle \ DB \rightarrow C_{sub}$

<u>Si-Si bonds</u>: Si-C_{sub}-Si along $\langle 1\,1\,0\rangle ~(\rightarrow 0.325 \text{ nm})$

C-C bonds:

- C-C next neighbour pairs reduced (mandatory)
- Peak at 0.3 nm slightly shifted
 - \searrow C_i combinations (dashed arrows)
 - \nearrow C_i $\langle 1\,0\,0\rangle$ & C_{\rm sub} combinations (|)
 - \nearrow C_i pure C_{sub} combinations (\downarrow)

Range $[|-\downarrow]$: C_{sub} & C_{sub} with nearby Si_i

Increased temperature simulations — V_1

Summary and Conclusions

Defects

- DFT / EA
 - Point defects excellently / fairly well described by DFT / EA
 - Identified C_i migration path
 - EA drastically overestimates the diffusion barrier
- Combinations of defects (DFT)
 - Agglomeration of point defects energetically favorable
 - C_{sub} favored conditions (conceivable in IBS)
 - $C_i \langle 100 \rangle \leftrightarrow C_{sub} \& Si_i \langle 110 \rangle$ Low barrier (0.77 eV) & low capture radius

Pecipitation simulations

- Problem of potential enhanced slow phase space propagation
- High T necessary to simulate IBS conditions (far from equilibrium)
- Low T \rightarrow C-Si $\langle 100 \rangle$ dumbbell dominated structure
- High $T \rightarrow C_{sub}$ dominated structure / Structures of stretched SiC $\Rightarrow C_{sub}$ involved in the precipitation process at elevated temperatures
- Si_i: vehicle to form C_{sub} & supply of Si & stress compensation (stretched SiC, interface)

IBS: 3C-SiC precipitation occurs by successive agglomeration of $C_{\rm sub}$

Acknowledgements

Thanks to ...

Augsburg

- Prof. B. Stritzker
- Ralf Utermann
- EP IV

<u>Helsinki</u>

• Prof. K. Nordlund

Munich

• Bayerische Forschungsstiftung

<u>Paderborn</u>

- Prof. J. Lindner
- Prof. G. Schmidt
- Dr. E. Rauls

Referees

- PD V. Eyert
- Prof. F. Haider

Thank you for your attention!