First-principles and empirical potential simulation study of intrinsic and carbon-related defects in silicon

<u>F. Zirkelbach</u> \bullet B. Stritzker

Experimentalphysik IV, Universität Augsburg, 86135 Augsburg, Germany

K. Nordlund

Department of Physics, University of Helsinki, 00014 Helsinki, Finland

W. G. Schmidt • E. Rauls • J. K. N. Lindner

Department Physik, Universität Paderborn, 33095 Paderborn, Germany

E-MRS Spring Meeting, Strasbourg, 17.05.2012

Motivation & Outline

Ion beam synthesis (IBS) of epitaxial single crystalline 3C-SiC

• Implantation

Stoichiometric dose | 180 keV | $500 \degree \text{C}$ \Rightarrow Epitaxial 3C-SiC layer & precipitates

• Annealing

10 h at 1250 $^{\circ}\mathrm{C}$

 \Rightarrow Homogeneous 3C-SiC layer

3C-SiC precipitation not yet fully understood

XTEM: single crystalline 3C-SiC in Si(100)

Outline

- Assumed SiC precipitation mechanisms / Controversy
- Utilized simulation techniques
- C and Si self-interstitial point defects in silicon
- Silicon carbide precipitation simulations

Supposed precipitation mechanism of SiC in Si

 \Rightarrow dark contrasts

 $4a_{\rm Si} = 5a_{\rm SiC}$

Supposed precipitation mechanism of SiC in Si

Utilized computational methods

Molecular dynamics (MD)

System of N particles	$N = 5832 \pm 1$ (Defects), $N = 238328 + 6000$ (Precipitation)
Phase space propagation	Velocity Verlet timestep: 1 fs
Analytical interaction potential	Tersoff-like short-range, bond order potential (Erhart/Albe) $E = \frac{1}{2} \sum_{i \neq j} \mathcal{V}_{ij}, \mathcal{V}_{ij} = f_C(r_{ij}) \left[f_R(r_{ij}) + b_{ij} f_A(r_{ij}) \right]$
Observables: time/ensemble averages	NpT (isothermal-isobaric) Berendsen thermostat/barostat

Density functional theory (DFT)

- Hohenberg-Kohn theorem: $\Psi_0(r_1, r_2, \dots, r_N) = \Psi[n_0(r)], E_0 = E[n_0]$
- Kohn-Sham approach: Single-particle effective theory
- Code: VASP
- Plane wave basis set $| E_{cut} = 300 \, eV$
- Ultrasoft pseudopotential
- Exchange & correlation: GGA
- Brillouin zone sampling: Γ-point
- Supercell: $N = 216 \pm 2$

Point defects & defect migration

Defect structure

- Creation of c-Si simulation volume
 - Periodic boundary conditions
 - T = 0 K, p = 0 bar

Insertion of interstitial C/Si atoms

Defect formation energy

$$E_{\rm f} = E - \sum_i N_i \mu_i$$

Binding energy

$$E_{\rm b} = E_{\rm f}^{\rm comb} - E_{\rm f}^{1^{\rm st}} - E_{\rm f}^{2^{\rm nd}}$$

 $E_{\rm b}$ < 0: energetically favorable configuration $E_{\rm b} \rightarrow$ 0: non-interacting, isolated defects

C interstitial point defects in silicon

$E_{\rm f} \ [{\rm eV}]$	Т	Н	$\langle 100\rangle$ DB	$\langle 110\rangle$ DB	S	В	C_{sub} & Si _i
VASP	unstable	unstable	3.72	4.16	1.95	4.66	4.17
Erhart/Albe	6.09	9.05^{*}	3.88	5.18	0.75	5.59^{*}	4.43

C interstitial migration

[100]

Defect combinations — ab inito

$E_{\rm b} \left[{\rm eV} \right]$	1	2	3	4	5	R
$[0\ 0\ \overline{1}]$	-0.08	-1.15	-0.08	0.04	-1.66	-0.19
$[0\ 0\ 1]$	0.34	0.004	-2.05	0.26	-1.53	-0.19
$[0\overline{1}0]$	-2.39	-0.17	-0.10	-0.27	-1.88	-0.05
$[0\ 1\ 0]$	-2.25	-1.90	-2.25	-0.12	-1.38	-0.06
$[\overline{1} \ 0 \ 0]$	-2.39	-0.36	-2.25	-0.12	-1.88	-0.05
$[1\ 0\ 0]$	-2.25	-2.16	-0.10	-0.27	-1.38	-0.06
C_{sub}	0.26	-0.51	-0.93	-0.15	0.49	-0.05
Vacancy	-5.39 ($\rightarrow C_{sub}$)	-0.59	-3.14	-0.54	-0.50	-0.31

Summary of combinations

Interaction along [110]

Combinations of (100)-type interstitials

- C_i agglomeration energetically favorable
- Reduction of strain
- Capture radius exceeding 1 nm
- Disappearance of attractive forces between two lowest separations.

 C_{i} agglomeration / no C clustering

Defect combinations of C-Si dimers and vacancies

Combinations of substitutional C and Si self-interstitials

C_{sub} - $\mathrm{Si}_{\mathrm{i}}~\langle 1\,1\,0\rangle$ interaction

- Most favorable: $C_{\rm sub}$ along $\langle 1\,1\,0\rangle$ chain of ${\rm Si}_i$
- Less favorable than ground-state $\mathrm{C_i}~\langle 1\,0\,0\rangle~\mathrm{DB}$
- Interaction drops quickly to zero
 - \rightarrow low capture radius

Transition from the ground state

- Low transition barrier
- Barrier smaller than C_i migration barrier
- Low Si_i migration barrier (0.67 eV) \rightarrow Separation of C_{sub} & Si_i most probable

 C_{sub} & Si_i instead of thermodynamic ground state IBS — process far from equilibrium

Combinations of substitutional C and Si self-interstitials

Silicon carbide precipitation simulations

Procedure

Note

- Amount of C atoms: 6000 $(r_{\rm prec} \approx 3.1 \text{ nm}, \text{ IBS: } 2\text{--}4 \text{ nm})$
- Simulation volume: 31³ Si unit cells (238328 Si atoms)

Restricted to classical potential caclulations

- \rightarrow Low C diffusion / overestimated barrier
- \rightarrow Consider V_2 and V_3

Silicon carbide precipitation simulations

Temperature as used in IBS $(450 \,^{\circ}\text{C})$

 $\mathrm{C_i}~\langle 1\,0\,0\rangle$ dumbbell dominated structure

 $\label{eq:constraint} \begin{array}{c} \mbox{Formation of C_i DBs} \\ \mbox{No agllomeration / precipitation} \end{array}$

Limitations:

- Time scale problem of MD
 ⇒ slow phase space propagation
- Short range potential
 ⇒ overestimated diffusion barrier

Increased temperatures

 C_{sub} dominated structure

 $\begin{array}{l} {\rm Si-C_{sub}-Si\ along\ } \left< 1\,1\,0 \right> \\ {\rm C_{sub}-Si-C_{sub}\ \&\ nearby\ Si_i} \end{array}$

Conclusions:

- Stretched coherent SiC structures \Rightarrow C_{sub} involved in precipitation mechanism
- Reduction in strain by Si_i

Summary and Conclusions

Summary

- First-principles investigation of defect combinations and mobilities in Si
- Empirical potential MD simulations on SiC precipitation in Si

Conclusions on SiC precipitation
$$\begin{array}{c} & \swarrow & \mathbf{C_i} - \mathrm{vs} - \mathbf{C_{sub}} \end{array}$$

- C_{sub} involved in the precipitation mechanism
- $\bullet~{\rm Role}~{\rm of}~{\rm the}~{\rm Si}_i$
 - Vehicle to rearrange C_{sub} $[C_{sub} \& Si_i \leftrightarrow C_i]$
 - Building block for surrounding Si host & further SiC
 - Strain compensation ...
 - \dots Si/SiC interface
 - ... within stretched coherent SiC structure

Further conclusions

• High T \leftrightarrow IBS conditions far from equilibrium

Acknowledgements

Thanks to ...

Augsburg

• Prof. B. Stritzker

Helsinki

• Prof. K. Nordlund

Munich

• Bayerische Forschungsstiftung

Paderborn

- Prof. J. Lindner
- Prof. G. Schmidt
- Dr. E. Rauls

Thank you for your attention!

Polytypes of SiC

	3C-SiC	4H-SiC	6H-SiC	Si	GaN	Diamond
Hardness [Mohs]		— 9.6 —		6.5	-	10
Band gap $[eV]$	2.36	3.23	3.03	1.12	3.39	5.5
Break down field $[10^6 \text{ V/cm}]$	4	3	3.2	0.6	5	10
Saturation drift velocity $[10^7 \text{ cm/s}]$	2.5	2.0	2.0	1	2.7	2.7
Electron mobility $[\rm cm^2/Vs]$	800	900	400	1100	900	2200
Hole mobility $[\rm cm^2/Vs]$	320	120	90	420	150	1600
Thermal conductivity [W/cmK]	5.0	4.9	4.9	1.5	1.3	22

IBS of epitaxial single crystalline 3C-SiC

• Implantation step 1

Almost stoichiometric dose $| 180 \text{ keV} | 500 \,^{\circ}\text{C} \Rightarrow$ Epitaxial 3C-SiC layer & precipitates

• Implantation step 2

Low remaining amount of dose | 180 keV | $250 \circ \text{C}$ \Rightarrow Destruction/Amorphization of precipitates at layer interface

• Annealing

10 h at 1250 $^{\circ}\mathrm{C}$

 \Rightarrow Homogeneous 3C-SiC layer with sharp interfaces

3C-SiC precipitation not yet fully understood

Si self-interstitial point defects in silicon

VASP 3.39 3.42 3.77 4.41 3.9 Erhart/Albe 4.39 4.48^* 3.40 5.42 3.9 Vacancy $\langle 110 \rangle$ DB $\langle 100 \rangle$ DB f	VASP 3.39 3.42 3.77 4.41 3.63 Erhart/Albe 4.39 4.48^* 3.40 5.42 3.13	
$\frac{\text{Erhart/Albe}}{\text{Vacancy}} \underbrace{\langle 110 \rangle \text{ DB}}_{\text{C}} \underbrace{\langle 100 \rangle \text{ DB}}_{\text{C}} \langle 100 \rangle \text{ D$	Erhart/Albe 4.39 4.48^* <u>3.40</u> 5.42 3.13	
$\frac{\text{Vacancy}}{\text{Vacancy}} \qquad \frac{\langle 110 \rangle \text{ DB}}{\langle 100 \rangle \text{ DB}} \qquad \frac{\langle 100 \rangle \text{ DB}}{\langle 100 \rangle \text{ DB}} \qquad \frac{\langle 100 \rangle \text{ DB}}{\langle 100 \rangle \text{ DB}} \qquad \frac{\langle 100 \rangle \text{ DB}}{\langle 100 \rangle \text{ DB}} \qquad \frac{\langle 100 \rangle \text{ DB}}{\langle 100 \rangle \text{ DB}} \qquad \frac{\langle 100 \rangle \text{ DB}}{\langle 100 \rangle \text{ DB}} \qquad \frac{\langle 100 \rangle \text{ DB}}{\langle 100 \rangle \text{ DB}} \qquad \frac{\langle 100 \rangle \text{ DB}}{\langle 100 \rangle \text{ DB}} \qquad \frac{\langle 100 \rangle \text{ DB}}{\langle 100 \rangle \text{ DB}} \qquad \frac{\langle 100 \rangle \text{ DB}}{\langle 100 \rangle \text{ DB}} \qquad \frac{\langle 100 \rangle \text{ DB}}{\langle 100 \rangle \text{ DB}} \qquad \frac{\langle 100 \rangle \text{ DB}}{\langle 100 \rangle \text{ DB}} \qquad \frac{\langle 100 \rangle \text{ DB}}{\langle 100 \rangle \text{ DB}} \qquad \frac{\langle 100 \rangle \text{ DB}}{\langle 100 \rangle \text{ DB}} \qquad \frac{\langle 100 \rangle \text{ DB}}{\langle 100 \rangle \text{ DB}} \qquad \frac{\langle 100 \rangle \text{ DB}}{\langle 100 \rangle \text{ DB}} \qquad \frac{\langle 100 \rangle \text{ DB}}{\langle 100 \rangle \text{ DB}} \qquad \frac{\langle 100 \rangle \text{ DB}}{\langle 100 \rangle \text{ DB}} \qquad \frac{\langle 100 \rangle \text{ DB}}{\langle 100 \rangle \text{ DB}} \qquad \frac{\langle 100 \rangle \text{ DB}}{\langle 100 \rangle \text{ DB}} \qquad \frac{\langle 100 \rangle \text{ DB}}{\langle 100 \rangle \text{ DB}} \qquad \frac{\langle 100 \rangle \text{ DB}}{\langle 100 \rangle \text{ DB}} \qquad \frac{\langle 100 \rangle \text{ DB}}{\langle 100 \rangle \text{ DB}} \qquad \frac{\langle 100 \rangle \text{ DB}}{\langle 100 \rangle \text{ DB}} \qquad \frac{\langle 100 \rangle \text{ DB}}{\langle 100 \rangle \text{ DB}} \qquad \frac{\langle 100 \rangle \text{ DB}}{\langle 100 \rangle \text{ DB}} \qquad \frac{\langle 100 \rangle \text{ DB}}{\langle 100 \rangle \text{ DB}} \qquad \frac{\langle 100 \rangle \text{ DB}}{\langle 100 \rangle \text{ DB}} \qquad \frac{\langle 100 \rangle \text{ DB}}{\langle 100 \rangle \text{ DB}} \qquad \frac{\langle 100 \rangle \text{ DB}}{\langle 100 \rangle \text{ DB}} \qquad \frac{\langle 100 \rangle \text{ DB}}{\langle 100 \rangle \text{ DB}} \qquad \frac{\langle 100 \rangle \text{ DB}}{\langle 100 \rangle \text{ DB}} \qquad \frac{\langle 100 \rangle \text{ DB}}{\langle 100 \rangle \text{ DB}} \qquad \frac{\langle 100 \rangle \text{ DB}}{\langle 100 \rangle \text{ DB}} \qquad \frac{\langle 100 \rangle \text{ DB}}{\langle 100 \rangle \text{ DB}} \qquad \frac{\langle 100 \rangle \text{ DB}}{\langle 100 \rangle \text{ DB}} \qquad \frac{\langle 100 \rangle \text{ DB}}{\langle 100 \rangle \text{ DB}} \qquad \frac{\langle 100 \rangle \text{ DB}}{\langle 100 \rangle \text{ DB}} \qquad \frac{\langle 100 \rangle \text{ DB}}{\langle 100 \rangle \text{ DB}} \qquad \frac{\langle 100 \rangle \text{ DB}}{\langle 100 \rangle \text{ DB}} \qquad \frac{\langle 100 \rangle \text{ DB}}{\langle 100 \rangle \text{ DB}} \qquad \frac{\langle 100 \rangle \text{ DB}}{\langle 100 \rangle \text{ DB}} \qquad \frac{\langle 100 \rangle \text{ DB}}{\langle 100 \rangle \text{ DB}} \qquad \frac{\langle 100 \rangle \text{ DB}}{\langle 100 \rangle \text{ DB}} \qquad \frac{\langle 100 \rangle \text{ DB}}{\langle 100 \rangle \text{ DB}} \qquad \frac{\langle 100 \rangle \text{ DB}}{\langle 100 \rangle \text{ DB}} \qquad \frac{\langle 100 \rangle \text{ DB}}{\langle 100 \rangle \text{ DB}} \qquad \frac{\langle 100 \rangle \text{ DB}}{\langle 100 \rangle \text{ DB}} \qquad \frac{\langle 100 \rangle \text{ DB}}{\langle 100 \rangle \text{ DB}} \qquad \frac{\langle 100 \rangle \text{ DB}}{\langle 100 \rangle \text{ DB}} \qquad \frac{\langle 100 \rangle \text{ DB}}{\langle 100 \rangle \text{ DB}} \qquad \frac{\langle 100 \rangle \text{ DB}}{\langle 100 \rangle \text{ DB}} \qquad \frac{\langle 100 \rangle \text{ DB}}{\langle 100 \rangle \text{ DB}} \qquad \frac{\langle 100 \rangle \text{ DB}}{\langle 100 \rangle \text{ DB}} \qquad \frac{\langle 100 \rangle \text{ DB}}{\langle 100 \rangle \text{ DB}} \qquad \frac{\langle 100 \rangle \text{ DB}}{\langle 100 \rangle \text{ DB}} \qquad $		
	$\langle 110\rangle$ DB $\underline{\langle 100\rangle}$ DB $\underline{\text{Tetrah}}$	<u>edral</u>

Hexagonal \triangleright

C-Si dimer & bond-centered interstitial configuration

C $\langle 1\,0\,0\rangle$ DB interstitial

Si-C-Si bond angle $\rightarrow 180^{\circ}$ $\Rightarrow sp$ hybridization Si-Si-Si bond angle $\rightarrow 120^{\circ}$ $\Rightarrow sp^2$ hybridization

Bond-centered interstitial

- Linear Si-C-Si bond
- Si: one C & 3 Si neighbours
- Spin polarized calculations
- No saddle point! Real local minimum!

Si	MO	С	MO	Si
sp^3		$^{\mathrm{sp}}$		sp^3
$\frac{\uparrow}{\mathrm{sp}^3} \frac{\uparrow}{\uparrow} \frac{\uparrow}{\uparrow}$	$\frac{\uparrow}{\sigma_{ m ab}}$	$\frac{1}{2p}$	$\frac{\uparrow}{\sigma_{\rm ab}}$	$ extstyle{$rac{1}{2}$} herefore{$rac{1}{2}$} herefore{$rac{1}{3}$} herefore{$rac{1}{3}$}$
	$\uparrow\downarrow$	ъÞ	$\uparrow\downarrow$	
	$\sigma_{ m b}$		$\sigma_{ m b}$	

Charge density

- Spin up
- Spin down
- Resulting spin up
- Si atoms
- C atom

Charge density isosurface

C interstitial migration — ab initio

C interstitial migration — analytical potential

BC to $[00\overline{1}]$ transition

- Lowermost migration barrier
- $\Delta E \approx 2.2 \,\mathrm{eV}$
- 2.4 times higher than ab initio result
- Different pathway

Transition involving a $\langle 1\,1\,0 \rangle$ configuration

- Bond-centered configuration unstable \rightarrow $C_i \ \langle 1\,1\,0 \rangle \ dumbbell$
- Minimum of the $[0 \ 0 \ \overline{1}]$ to $[0 \ \overline{1} \ 0]$ transition $\rightarrow C_i \ \langle 1 \ 1 \ 0 \rangle \ DB$

- $\Delta E \approx 2.2 \,\mathrm{eV} \& 0.9 \,\mathrm{eV}$
- 2.4 3.4 times higher than ab initio result
- After all: Change of the DB orientation

Drastically overestimated diffusion barrier

Silicon carbide precipitation simulations at 450 °C as in IBS

Low C concentration — V_1

 $\mathrm{C_i}~\langle 1\,0\,0\rangle$ dumbbell dominated structure

- Si-C bumbs around $0.19\,\mathrm{nm}$
- C-C peak at 0.31 nm (expected in 3C-SiC): concatenated differently oriented C_i DBs
- Si-Si NN distance stretched to $0.3 \,\mathrm{nm}$

 $\begin{array}{c} \mbox{Formation of C_i dumbbells}\\ \mbox{C atoms separated as expected in $3C$-SiC} \end{array}$

High C concentration — V_2/V_3

- High amount of strongly bound C-C bonds
- Increased defect & damage density
 → Arrangements hard to categorize and trace
- Only short range order observable

Amorphous SiC-like phase

Formation of 3C-SiC fails to appear

 V_1 :

Formation of C_i indeed occurs Agllomeration not observed

Amorphous SiC-like structure

 $V_{2,3}$: (not expected at 450 °C) No rearrangement/transition into 3C-SiC

Increased temperature simulations — V_1

Si-C bonds:

- Vanishing cut-off artifact (above $1650 \,^{\circ}\text{C}$)
- Structural change: $C_i \langle 1 \, 0 \, 0 \rangle \ DB \rightarrow C_{sub}$

<u>Si-Si bonds</u>: Si-C_{sub}-Si along $\langle 1\,1\,0\rangle ~(\rightarrow 0.325 \text{ nm})$

C-C bonds:

- C-C next neighbour pairs reduced (mandatory)
- Peak at 0.3 nm slightly shifted
 - \searrow C_i combinations (dashed arrows)
 - \nearrow C_i $\langle 1\,0\,0\rangle$ & C_{\rm sub} combinations (|)
 - \nearrow C_i pure C_{sub} combinations (\downarrow)

Range $[|-\downarrow]$: C_{sub} & C_{sub} with nearby Si_i

Increased temperature simulations at high C concentration

- Decreasing cut-off artifact
- Amorphous SiC-like phase remains
- High amount of damage & alignement to c-Si host matrix lost
- Slightly sharper peaks \Rightarrow indicate slight acceleration of dynamics due to temperature

High C & small V & short $t \Rightarrow \frac{\text{Slow structural evolution due to}}{\text{strong C-C bonds}} \Leftarrow \text{High C & low T implants}$

Long time scale simulations at maximum temperature

Differences

- Temperature set to $0.95 \cdot T_{\rm m}$
- Cubic insertion volume \Rightarrow spherical insertion volume
- Amount of C atoms: $6000 \rightarrow 5500 \Leftrightarrow r_{\text{prec}} = 0.3 \text{ nm}$
- Simulation volume: 21 unit cells of c-Si in each direction

Long time scales and high temperatures most probably not sufficient enough!

Investigation of a silicon carbide precipitate in silicon

$(1) \\ (1)$

Construction

- Simulation volume: 21^3 unit cells of c-Si
- Spherical topotactically aligned precipitate $r = 3.0 \text{ nm} \Leftrightarrow \approx 5500 \text{ C}$ atoms
- Create c-Si but skipped inside sphere of radius x
- Create 3C-SiC inside sphere of radius xand lattice constant y
- Strong coupling to heat bath $(T = 20 \degree \text{C})$

$\underline{\text{Results}}$

- Slight increase of c-Si lattice constant!
- C-C peaks

(imply same distanced Si-Si peaks)

- New peak at $0.307 \text{ nm}: 2^{\text{nd}}$ NN in 3C-SiC
- Bumps (\downarrow) : 4th and 6th NN
- 3C-SiC lattice constant: 4.34 Å(bulk: 4.36 Å) \rightarrow compressed precipitate
- Interface tension: $20.15 \text{ eV/nm}^2 \text{ or } 3.23 \times 10^{-4} \text{ J/cm}^2$ (literature: $2 - 8 \times 10^{-4} \text{ J/cm}^2$)

Investigation of a silicon carbide precipitate in silicon

Appended annealing steps

- artificially constructed interface
 - \rightarrow allow for rearrangement of interface atoms
- check SiC stability

Temperature schedule

- rapidly heat up structure up to 2050 °C (75 K/ps)
- slow heating up to $1.2 \cdot T_{\rm m} = 2940$ K by 1 K/ps \rightarrow melting at around 2840 K (\triangleright)
- cooling down structure at 100 % $T_{\rm m}$ (1 K/ps) \rightarrow no energetically more favorable struture

DFT parameters

		USPP, LDA	USPP, GGA	PAW, LDA	PAW, GGA	Exp.
Si (dia)	$a [{ m \AA}]$	5.389	5.455	-	-	5.429
	$\Delta_a \ [\%]$	0.7%	0.5%	-	-	-
	$E_{\rm coh} [{\rm eV}]$	-5.277	-4.591	-	-	-4.63
	$\Delta_E \ [\%]$	14.0%	0.8%	-	-	-
C (dia)	$a [{ m \AA}]$	3.527	3.567	-	-	3.567
	$\Delta_a \ [\%]$	1.1%	0.01%	-	-	-
	$E_{\rm coh} [{\rm eV}]$	-8.812	-7.703	-	-	-7.374
	$\Delta_E \ [\%]$	19.5%	4.5%	-	-	-
3C-SiC	$a [{ m \AA}]$	4.319	4.370	4.330	4.379	4.359
	$\Delta_a \ [\%]$	0.9%	0.3%	0.7%	0.5%	-
	$E_{\rm coh} [{\rm eV}]$	-7.318	-6.426	-7.371	-6.491	-6.340
	$\Delta_E \ [\%]$	15.4%	1.4%	16.3%	2.4%	-

Equilibrium lattice constants and cohesive energies

	Si (dia)	C (dia)	3C-SiC
a [Å]	5.458	3.562	4.365
Δ_a [%]	0.5	0.1	0.1
$E_{\rm coh} [{\rm eV}]$	-4.577	-7.695	-6.419
$\Delta_E \ [\%]$	1.1	4.4	1.2

 \leftarrow entire parameter set

DFT parameters

Lattice constants with respect to the PW cut-off energy

Defect formation energy with respect to the size of the supercell