Atomistic simulation study on the silicon carbide precipitation in silicon

F. ZIRKELBACH

Yet another seminar talk

Augsburg, 26. Mai 2011

PROPERTIES

wide band gap
high electric breakdown field
good electron mobility
high electron saturation drift velocity
high thermal conductivity
hard and mechanically stable
chemically inert
radiation hardness

APPLICATIONS

high-temperature, high power and high-frequency electronic and optoelectronic devices

material suitable for extreme conditions microelectromechanical systems abrasives, cutting tools, heating elements

> first wall reactor material, detectors and electronic devices for space

Polytypes of SiC

	3C-SiC	4H-SiC	6H-SiC	Si	GaN	Diamond
Hardness [Mohs]		— 9.6 —		6.5	-	10
Band gap $[eV]$	2.36	3.23	3.03	1.12	3.39	5.5
Break down field $[10^6 \text{ V/cm}]$	4	3	3.2	0.6	5	10
Saturation drift velocity $[10^7 \text{ cm/s}]$	2.5	2.0	2.0	1	2.7	2.7
Electron mobility $[\rm cm^2/Vs]$	800	900	400	1100	900	2200
Hole mobility $[\rm cm^2/Vs]$	320	120	90	420	150	1600
Thermal conductivity [W/cmK]	5.0	4.9	4.9	1.5	1.3	22

Values for T = 300 K

Fabrication of silicon carbide

SiC - Born from the stars, perfected on earth.

Conventional thin film SiC growth:

- Sublimation growth using the modified Lely method
 - SiC single-crystalline seed at $T = 1800 \,^{\circ}\text{C}$
 - Surrounded by polycrystalline SiC in a graphite crucible at T = 2100 2400 °C
 - Deposition of supersaturated vapor on cooler seed crystal
- Homoepitaxial growth using CVD
 - Step-controlled epitaxy on off-oriented 6H-SiC substrates
 - $C_3H_8/SiH_4/H_2$ at 1100 1500 °C
 - Angle, temperature $\rightarrow 3C/6H/4H$ -SiC
- $\bullet\,$ Heteroepitaxial growth of 3C-SiC on Si using CVD/MBE
 - Two steps: carbonization and growth
 - $T = 650 1050 \,^{\circ}\mathrm{C}$
 - SiC/Si lattice mismatch ≈ 20 %
 - Quality and size not yet sufficient

NASA: 6H-SiC and 3C-SiC LED on 6H-SiC substrate

Hex: micropipes along c-axis

3C-SiC fabrication less advanced

Fabrication of silicon carbide

Alternative approach: Ion beam synthesis (IBS) of burried 3C-SiC layers in Si(100)

- Implantation step 1 $\overline{180 \text{ keV C}^+, D = 7.9 \times 10^{17} \text{ cm}^{-2}, T_i = 500 \,^{\circ}\text{C}}$ \Rightarrow box-like distribution of equally sized and epitactically oriented SiC precipitates
- Implantation step 2 $\overline{180 \text{ keV C}^+, D = 0.6 \times 10^{17} \text{ cm}^{-2}, T_i = 250 \,^{\circ}\text{C}}$ \Rightarrow destruction of SiC nanocrystals in growing amorphous interface layers
- Annealing

 $T = 1250 \,^{\circ}\text{C}, t = 10 \,\text{h}$

 \Rightarrow homogeneous, stoichiometric SiC layer with sharp interfaces

XTEM micrograph of single crystalline 3C-SiC in Si(100)

Outline

- Supposed precipitation mechanism of SiC in Si
- Utilized simulation techniques
 - Molecular dynamics (MD) simulations
 - Density functional theory (DFT) calculations
- C and Si self-interstitial point defects in silicon
- Silicon carbide precipitation simulations
- Summary / Conclusion / Outlook

Supposed precipitation mechanism of SiC in Si

Si & SiC lattice structure

C-Si dimers (dumbbells) on Si interstitial sites

Precipitation of 3C-SiC in Si ⇒ Moiré fringes & release of Si self-interstitials

Supposed precipitation mechanism of SiC in Si

Si & SiC lattice structure

C-Si din on Si i

Controversial views

- Implantations at high T (Nejim et al.)
 - Topotactic transformation based on C_{sub}

<u>10 nm</u>

- Si_i as supply reacting with further C in cleared volume
- Annealing behavior (Serre et al.)
 - Room temperature implants \rightarrow highly mobile C
 - Elevated T implants \rightarrow no/low C redistribution/migration (indicate stable C_{sub} configurations)
- Strained silicon & Si/SiC heterostructures
 - Coherent SiC precipitates (tensile strain)
 - Incoherent SiC (strain relaxation)

lanes match

C in Si

rstitials

 $4a_{\rm Si} = 5a_{\rm SiC}$

10 nm

Molecular dynamics (MD) simulations

MD basics:

- Microscopic description of N particle system
- Analytical interaction potential
- Numerical integration using Newtons equation of motion as a propagation rule in 6N-dimensional phase space
- Observables obtained by time and/or ensemble averages

Details of the simulation:

- Integration: Velocity Verlet, timestep: 1 fs
- Ensemble: NpT (isothermal-isobaric)
 - Berendsen thermostat: $\tau_{\rm T} = 100$ fs
 - Berendsen barostat:

 $\tau_{\rm P} = 100 \text{ fs}, \, \beta^{-1} = 100 \text{ GPa}$

• Erhart/Albe potential: Tersoff-like bond order potential

$$E = \frac{1}{2} \sum_{i \neq j} \mathcal{V}_{ij}, \quad \mathcal{V}_{ij} = f_C(r_{ij}) \left[f_R(r_{ij}) + b_{ij} f_A(r_{ij}) \right]$$

atom k r_{ik} atom i θ_{ijk} r_{ik} r_{ij} atom j

Density functional theory (DFT) calculations

Basic ingredients necessary for DFT

- Hohenberg-Kohn theorem ground state density $n_0(r)$...
 - ... uniquely determines the ground state potential / wavefunctions
 - ... minimizes the systems total energy
- Born-Oppenheimer N moving electrons in an external potential of static nuclei

$$H\Psi = \left[-\sum_{i}^{N} \frac{\hbar^2}{2m} \nabla_i^2 + \sum_{i}^{N} V_{\text{ext}}(r_i) + \sum_{i< j}^{N} V_{e-e}(r_i, r_j)\right] \Psi = E\Psi$$

• Effective potential - averaged electrostatic potential & exchange and correlation

$$V_{\rm eff}(r) = V_{\rm ext}(r) + \int \frac{e^2 n(r')}{|r - r'|} d^3 r' + V_{\rm XC}[n(r)]$$

• Kohn-Sham system - Schrödinger equation of N non-interacting particles

$$\left[-\frac{\hbar^2}{2m}\nabla^2 + V_{\text{eff}}(r)\right]\Phi_i(r) = \epsilon_i\Phi_i(r) \quad \Rightarrow \quad n(r) = \sum_i^N |\Phi_i(r)|^2$$

• <u>Self-consistent solution</u>

n(r) depends on Φ_i , which depend on V_{eff} , which in turn depends on n(r)

• Variational principle - minimize total energy with respect to n(r)

Density functional theory (DFT) calculations

Details of applied DFT calculations in this work

• Exchange correlation functional - approximations for the inhomogeneous electron gas

• LDA:
$$E_{\rm XC}^{\rm LDA}[n] = \int \epsilon_{\rm XC}(n)n(r)d^3r$$

• GGA: $E_{\rm XC}^{\rm GGA}[n] = \int \epsilon_{\rm XC}(n, \nabla n)n(r)d^3r$

• <u>Plane wave basis set</u> - approximation of the wavefunction Φ_i by plane waves φ_j

$$\rightarrow$$
 Fourier series: $\Phi_i = \sum_{|G+k| < G_{\text{cut}}} c_j^i \varphi_j(r), \quad E_{\text{cut}} = \frac{\hbar^2}{2m} G_{\text{cut}}^2$ (300 eV)

- Brillouin zone sampling Γ -point only calculations
- Pseudo potential consider only the valence electrons
- $\underline{\text{Code}}$ VASP 4.6

MD and structural optimization

- MD integration: Gear predictor corrector algorithm
- Pressure control: Parrinello-Rahman pressure control
- Structural optimization: Conjugate gradient method

C and Si self-interstitial point defects in silicon

Procedure:

- Creation of c-Si simulation volume
- Periodic boundary conditions
- T = 0 K, p = 0 bar

Insertion of interstitial C/Si atoms

Relaxation / structural energy minimization

	size [unit cells]	# atoms
VASP	$3 \times 3 \times 3$	216 ± 1
Erhart/Albe	$9 \times 9 \times 9$	5832 ± 1

- Tetrahedral
- Hexagonal
- $\langle 1\,0\,0\rangle$ dumbbell
- $\langle 1\,1\,0\rangle$ dumbbell
- Bond-centered
- Vacancy / Substitutional

Si self-interstitial point defects in silicon

$E_{\rm f} \; [{\rm eV}]$	$\langle 110\rangle$ DB	Н	Т	$\langle 100\rangle$ DB	V
VASP	<u>3.39</u>	3.42	3.77	4.41	3.63
Erhart/Albe	4.39	4.48^{*}	<u>3.40</u>	5.42	3.13

Hexagonal \triangleright

<u>Tetrahedral</u>

 $\langle 1\,0\,0\rangle$ dumbbell

C interstitial point defects in silicon

E_{f}	Т	Н	$\langle 100\rangle$ DB	$\langle 110\rangle$ DB	S	В	C_{sub} & Si_i
VASP	unstable	unstable	3.72	4.16	1.95	4.66	4.17
Erhart/Albe MD	6.09	9.05^{*}	3.88	5.18	0.75	5.59^{*}	4.43

Tetrahedral

<u>Substitutional</u>

C $\langle 100 \rangle$ dumbbell interstitial configuration

Distances [nm]	r(1C)	r(2C)	r(3C)	r(12)	r(13)	r(34)	r(23)	r(25)
Erhart/Albe	0.175	0.329	0.186	0.226	0.300	0.343	0.423	0.425
VASP	0.174	0.341	0.182	0.229	0.286	0.347	0.422	0.417

Angles $[^{\circ}]$	θ_1	θ_2	θ_3	$ heta_4$
Erhart/Albe	140.2	109.9	134.4	112.8
VASP	130.7	114.4	146.0	107.0
Displacements	s [nm]	a	b	a + b
Erhart/Albe		0.084	-0.091	0.175
VASP		0.109	-0.065	0.174

Bond-centered interstitial configuration

• Linear Si-C-Si bond

- Si: one C & 3 Si neighbours
- Spin polarized calculations
- No saddle point! Real local minimum!

${{ m Si}\over{ m sp}^3}$	МО	${f C}$ sp	МО	$^{ m Si}_{ m sp}{}^3$
$\stackrel{\uparrow}{=} \stackrel{\uparrow}{=} \stackrel{\uparrow}{=} \stackrel{\uparrow}{=}$	$\uparrow \sigma_{ m ab}$	$\frac{1}{2p}$	$\frac{\uparrow}{\sigma_{ m ab}}$	$\stackrel{\uparrow}{=} \stackrel{\uparrow}{=} }$
	$\frac{\uparrow\downarrow}{\sigma_{\rm b}}$	$^{\mathrm{sp}}$	$\frac{\uparrow\downarrow}{\sigma_{\rm b}}$	

Migration of the C $\langle 100 \rangle$ dumbbell interstitial

Investigated pathways

 $\langle 0 \, 0 \, \overline{1} \rangle \rightarrow \langle 0 \, 0 \, 1 \rangle$

Migration of the C $\langle 100 \rangle$ dumbbell interstitial

VASP results

- Energetically most favorable path
 - Path 2
 - Activation energy: $\approx 0.9 \text{ eV}$
 - Experimental values: $0.73 \dots 0.87 \text{ eV}$
 - \Rightarrow Diffusion path identified!
- Reorientation (path 3)
 - More likely composed of two consecutive steps of type 2
 - Experimental values: $0.77 \dots 0.88 \text{ eV}$
 - \Rightarrow Reorientation transition identified!

Migration of the C $\langle 100 \rangle$ dumbbell interstitial

Erhart/Albe results

- Lowest activation energy: $\approx 2.2 \text{ eV}$
- 2.4 times higher than VASP
- Different pathway

Transition involving $C_i \langle 1 \, 1 \, 0 \rangle$

- Bond-centered configuration unstable \rightarrow C_i (110) dumbbell
- Transition minima of path 2 & 3 \rightarrow C_i $\langle 1 \, 1 \, 0 \rangle$ dumbbell
- Activation energy: $\approx 2.2 \text{ eV} \& 0.9 \text{ eV}$
- 2.4 3.4 times higher than VASP
- Rotation of dumbbell orientation

Overestimated diffusion barrier

Combinations with a C-Si $\langle 1\,0\,0\rangle$ -type interstitial

Binding energy: $E_{\rm b} = E_{\rm f}^{\rm defect\ combination} - E_{\rm f}^{\rm C\ \langle 0\,0\,\overline{1}\rangle\ dumbbell} - E_{\rm f}^{\rm 2nd\ defect}$

$E_{\rm b} \left[{\rm eV} \right]$	1	2	3	4	5	R
$\langle 0 0 \overline{1} \rangle$	-0.08	-1.15	-0.08	0.04	-1.66	-0.19
$\langle 0 \ 0 \ 1 \rangle$	0.34	0.004	-2.05	0.26	-1.53	-0.19
$\langle 0\overline{1}0\rangle$	-2.39	-0.17	-0.10	-0.27	-1.88	-0.05
$\langle 0 \ 1 \ 0 \rangle$	-2.25	-1.90	-2.25	-0.12	-1.38	-0.06
$\langle \overline{1} \ 0 \ 0 angle$	-2.39	-0.36	-2.25	-0.12	-1.88	-0.05
$\langle 100 angle$	-2.25	-2.16	-0.10	-0.27	-1.38	-0.06
C substitutional (C_S)	0.26	-0.51	-0.93	-0.15	0.49	-0.05
Vacancy	$-5.39 (\rightarrow C_S)$	-0.59	-3.14	-0.54	-0.50	-0.31

 $\langle 0\,\overline{1}\,0\rangle$ at position 1

 $\langle 100 \rangle$ at position 1

- $E_{\rm b} = 0 \Leftrightarrow$ non-interacting defects $E_{\rm b} \to 0$ for increasing distance (R)
- Stress compensation / increase
- Unfavored: antiparallel orientations
- Indication of energetically favored agglomeration
- Most favorable: C clustering
- However: High barrier $(> 4 \,\mathrm{eV})$
- 4×-2.25 versus 2×-2.39 (Entropy)

Combinations of C-Si $\langle 100 \rangle$ -type interstitials

Energetically most favorable combinations along $\langle 110 \rangle$

	1	2	3	4	5	6
$E_{\rm b} [{\rm eV}]$	-2.39	-1.88	-0.59	-0.31	-0.24	-0.21
C-C distance $[Å]$	1.4	4.6	6.5	8.6	10.5	10.8
Type	$\langle \overline{1}00 angle$	$\langle 100 angle$	$\langle 100 angle$	$\langle 100 angle$	$\langle 100 angle$	$\langle 100 angle,\ \langle 0\overline{1}0 angle$

0 -1 Binding energy [eV] -2 -3 -4 -5 Data Fit a/x^3 (except data point 1) Interpolated (all data points) -6 0.20.30.50.6 0.70.81.1 0.10.40.91 C-C distance [nm]

- Interaction proportional to reciprocal cube of C-C distance
- Saturation in the immediate vicinity
- \Rightarrow Agglomeration of C_i expected
- \Rightarrow Absence of C clustering

Consisten with initial precipitation model

Combinations of substitutional C and $\langle 1 1 0 \rangle$ Si self-interstitials

Migration in C-Si $\langle 100 \rangle$ and vacancy combinations

Conclusion of defect / migration / combined defect simulations

Defect structures

- Accurately described by quantum-mechanical simulations
- Less accurate description by classical potential simulations
- Underestimated formation energy of C_{sub} by classical approach
- + Both methods predict same ground state: $C_i~\langle 1\,0\,0\rangle$ dumbbell

Migration

- C migration pathway in Si identified
- Consistent with reorientation and diffusion experiments
- Different path and ...
- overestimated barrier by classical potential calculations

Concerning the precipitation mechanism

- Agglomeration of C-Si dumbbells energetically favorable (stress compensation)
- C-Si indeed favored compared to C_{sub} & $\langle 110 \rangle$ Si self-interstitial
- Possible low interaction capture radius of C_{sub} & (110) Si self-interstitial
- Low barrier for $C_i \langle 100 \rangle \rightarrow C_{sub} \& Si_i \langle 110 \rangle$
- In absence of nearby $\langle 1\,1\,0\rangle$ Si self-interstitial: C-Si $\langle 1\,0\,0\rangle$ + Vacancy \rightarrow C_{sub} (SiC)

Results suggest increased participation of C_{sub}

Silicon carbide precipitation simulations

- Restricted to classical potential simulations
- V_2 and V_3 considered due to low diffusion
- Amount of C atoms: 6000 ($r_{\text{prec}} \approx 3.1 \text{ nm}$, IBS: 2 ... 4 nm)
- Simulation volume: $31 \times 31 \times 31$ unit cells (238328 Si atoms)

Silicon carbide precipitation simulations at 450 °C as in IBS

- $\frac{\text{Low C concentration } (V_1)}{\langle 100 \rangle \text{ C-Si dumbbell dominated structure}}$
 - Si-C bumbs around 0.19 nm
 - C-C peak at 0.31 nm (as expected in 3C-SiC): concatenated dumbbells of various orientation
 - Si-Si NN distance stretched to 0.3 nm
- $\Rightarrow C \text{ atoms in proper 3C-SiC distance first}$ $\frac{\text{High C concentration } (V_2, V_3)}{\text{High amount of strongly bound C-C bonds}}$ $\text{Defect density} \uparrow \Rightarrow \text{considerable amount of damage}$ Only short range order observable $\Rightarrow \text{ amorphous SiC-like phase}$

Silicon carbide precipitation simulations at 450 °C as in IBS

Limitations of molecular dynamics and short range potentials

Time scale problem of MD

Minimize integration error

- \Rightarrow discretization considerably smaller than reciprocal of fastest vibrational mode
- Order of fastest vibrational mode: $10^{13} 10^{14}$ Hz
- \Rightarrow suitable choice of time step: $\tau = 1$ fs $= 10^{-15}$ s
- \Rightarrow <u>slow</u> phase space propagation
- Several local minima in energy surface separated by large energy barriers
- \Rightarrow transition event corresponds to a multiple of vibrational periods
- \Rightarrow phase transition made up of many infrequent transition events

Accelerated methods: Temperature accelerated MD (TAD), self-guided MD ...

Limitations related to the short range potential

Cut-off function pushing forces and energies to zero between 1^{st} and 2^{nd} next neighbours \Rightarrow overestimated unphysical high forces of next neighbours

Potential enhanced problem of slow phase space propagation

Approach to the (twofold) problem

Increased temperature simulations without TAD corrections (accelerated methods or higher time scales exclusively not sufficient) retain proper thermodynmic sampling

IBS

- 3C-SiC also observed for higher T
- higher T inside sample
- structural evolution vs. equilibrium properties

Increased temperature simulations at low C concentration

Si-C bonds:

- Vanishing cut-off artifact (above $1650 \,^{\circ}C$)
- Structural change: C-Si $\langle 1\,0\,0\rangle \rightarrow C_{sub}$

<u>Si-Si bonds</u>: Si-C_{sub}-Si along $\langle 1\,1\,0\rangle ~(\rightarrow 0.325 \text{ nm})$

<u>C-C bonds:</u>

 ${{\operatorname{stretched}\,\operatorname{SiC}}\atop{\operatorname{in}\,\operatorname{c-Si}}}$

- C-C next neighbour pairs reduced (mandatory)
- Peak at 0.3 nm slightly shifted
 - C-Si $\langle 100 \rangle$ combinations (dashed arrows) \rightarrow C-Si $\langle 100 \rangle$ & C_{sub} combinations (|) \rightarrow pure C_{sub} combinations (\downarrow)
 - Range [$|-\downarrow$]: C_{sub} & C_{sub} with nearby Si_I

Increased temperature simulations at low C concentration

Increased temperature simulations at high C concentration

- Decreasing cut-off artifact
- Amorphous SiC-like phase remains
- High amount of damage & alignement to c-Si host matrix lost
- Slightly sharper peaks \Rightarrow indicate slight acceleration of dynamics due to temperature

High C & small V & short $t \Rightarrow$ Slow restructuring due to strong C-C bonds \leftarrow High C & low T implants

Summary and Conclusions

Pecipitation simulations

- High C concentration \rightarrow amorphous SiC like phase
- Problem of potential enhanced slow phase space propagation
- Low T \rightarrow C-Si $\langle 100 \rangle$ dumbbell dominated structure
- High $T \rightarrow C_{sub}$ dominated structure
- High T necessary to simulate IBS conditions (far from equilibrium)
- Precipitation by successive agglomeration of $C_{sub}(epitaxy)$
- Si_i : vehicle to form C_{sub} & supply of Si & stress compensation (stretched SiC, interface)

Defects

- DFT / EA
 - Point defects excellently / fairly well described by DFT / EA
 - C_{sub} drastically underestimated by EA
 - EA predicts correct ground state: C_{sub} & $Si_i > C_i$
 - Identified migration path explaining diffusion and reorientation experiments by DFT
 - EA fails to describe C_i migration: Wrong path & overestimated barrier
- Combinations of defects
 - Agglomeration of point defects energetically favorable by compensation of stress
 - Formation of C-C unlikely
 - C_{sub} favored conditions (conceivable in IBS)
 - $C_i \langle 1 0 0 \rangle \leftrightarrow C_{sub} \& Si_i \langle 1 1 0 \rangle$ Low barrier (0.77 eV) & low capture radius

Precipitation by successive agglomeration of $\mathrm{C}_{\mathrm{sub}}$

Acknowledgements

Thanks to ...

Augsburg

- Prof. B. Stritzker (accomodation at EP IV)
- Ralf Utermann (EDV)

<u>Helsinki</u>

• Prof. K. Nordlund (MD)

Munich

• Bayerische Forschungsstiftung (financial support)

Paderborn

- Prof. J. Lindner (SiC)
- Prof. G. Schmidt (DFT + financial support)
- Dr. E. Rauls (DFT + SiC)
- Dr. S. Sanna (VASP)

Thank you for your attention!