]> hackdaworld.org Git - lectures/latex.git/blob - computational_physics/cp.tex
better save before going to cafete ...
[lectures/latex.git] / computational_physics / cp.tex
1 \documentclass[pdf]{prosper}
2
3 \usepackage{verbatim}
4 \usepackage[german]{babel}
5 \usepackage[latin1]{inputenc}
6 \usepackage[T1]{fontenc}
7 \usepackage{amsmath}
8 \usepackage{ae}
9 \usepackage{aecompl}
10 \usepackage{color}
11 \usepackage{graphicx}
12 \graphicspath{{./img/}}
13 \usepackage{hyperref}
14
15 \title{introduction to computational physics}
16 \subtitle{basic concepts and approaches}
17 \author{frank zirkelbach}
18 \email{frank.zirkelbach@physik.uni-augsburg.de}
19 \institution{experimantal physics {\footnotesize IV} - university of augsburg}
20
21 \begin{document}
22
23 \maketitle
24
25 \overlays{5}{
26 \begin{slide}{outline}
27 \begin{itemstep}
28   \item motivation
29   \item history of computing hardware/software
30   \item warning
31   \item computational techniques
32   \item summary
33 \end{itemstep}
34 \end{slide}}
35
36 \overlays{3}{
37 \begin{slide}{motivation}
38 \FromSlide{1}{
39   \begin{center}
40   \begin{figure}[h]
41   \includegraphics[width=8cm]{cp_appl_field.eps}
42   \end{figure}
43   \end{center}
44 }
45 \FromSlide{2}{
46 challenge:
47 \begin{itemize}
48   \item precise mathematical theory
49   \item often: solving theory's equations ab-initio is not realistic
50   \item only a few models can be solved exactly
51 \end{itemize}}
52 \FromSlide{3}{
53 $\Rightarrow$ study and implementation of numerical algorithms
54 }
55 \end{slide}}
56
57 \overlays{5}{
58 \begin{slide}{history of computing hardware}
59   \begin{minipage}[t]{10cm}
60      \onlySlide*{1}{\begin{center} \includegraphics[height=3cm]{abacus.eps} \end{center}}
61      \onlySlide*{2}{\begin{center} \includegraphics[height=3cm]{eniac.eps} \hspace{1cm} \includegraphics[height=3cm]{tube.eps} \end{center}}
62      \onlySlide*{3}{\begin{center} \includegraphics[height=3cm]{z1.eps} \end{center}}
63      \onlySlide*{4}{\begin{center} \includegraphics[height=3cm]{pdp1.eps} \hspace{1pt} \includegraphics[height=3cm]{transistor.eps} \end{center}}
64      \onlySlide*{5}{\begin{center} \includegraphics[height=3cm]{pdp8.eps} \hspace{1cm} \includegraphics[height=3cm]{ic.eps} \end{center}}
65      %\FromSlide{6}{\begin{center} \includegraphics[height=3cm]{} \end{center}}
66   \end{minipage}
67   \begin{minipage}[b]{10cm}
68     \begin{itemstep}
69       \item $3000 \, bc$: abacus - first calculating device
70       \item $1945$: eniac - electrical digital computer
71       \item $1938/41$: z1/3 - featuring memory and programmability
72       \item $1960$: pdp-1 - transistor based computers
73       \item $1964$: pdp-8 - integrated circuit computers
74     \end{itemstep}
75   \end{minipage}
76 \end{slide}}
77
78 \overlays{6}{
79 \begin{slide}{history of computing hardware}
80   \begin{minipage}[t]{10cm}
81      \onlySlide*{1}{\begin{center} \includegraphics[height=3cm]{4004.eps} \end{center}}
82      \onlySlide*{2}{\begin{center} \includegraphics[height=3cm]{cray2.eps} \hspace{1pt} \includegraphics[height=3cm]{cray2_i.eps} \end{center}}
83      \onlySlide*{3}{\begin{center} \includegraphics[height=3cm]{apple2.eps} \includegraphics[height=3cm]{c64.eps} \end{center}}
84      \onlySlide*{4}{\begin{center} \includegraphics[height=3cm]{intel1.eps} \includegraphics[height=3cm]{intel2.eps} \end{center}}
85      \onlySlide*{5}{\begin{center} \includegraphics[height=3cm]{mips.eps} \hspace{1pt} \includegraphics[height=3cm]{ppc.eps} \end{center}}
86      \onlySlide*{6}{\begin{center} \includegraphics[height=3cm]{cluster1.eps} \hspace{1cm} \includegraphics[height=3cm]{cluster2.eps} \end{center}}
87   \end{minipage}
88   \begin{minipage}[b]{10cm}
89     \begin{itemstep}
90       \item $1970$: intel 4004 - first single chip $\mu$-processor
91       \item $1977/85$: cray1/2 - vector supercomputer
92       \item $1977/82/85$: 6502/6510/m68k - first pc
93       \item $1978/82/85 $: 8086/80286/80386
94       \item $1985$: mips - first risc design
95       \item $1990/2000$: massive parallel computing
96     \end{itemstep}
97   \end{minipage}
98 \end{slide}}
99
100 \overlays{11}{
101 \begin{slide}{history of computing software}
102   \begin{itemstep}
103     \item $1946$: plankalk"ul - high-level programming language
104     \item $1950$: assembler - translating instruction mnemonics
105     \item $1954$: fortran - {\scriptsize formula translation}
106     \item $1963$: basic - {\scriptsize beginner's all purpose symbolic instruction code}
107     \item $1964$: os/360 - batch processing operating system
108     \item $1969$: unix - multics port to pdp-8, pdp-11/20
109     \item $1972$: c programming language - thompson, ritchie
110     \item $1978/84/85$: apple os/atari, amiga os/mac os
111     \item $1981/85/92/95$: ms-dos/windows 1.0/3.x/95
112     \item $1983$: gnu project - unix-like free software development
113     \item $1991$: linux - open-source kernel
114   \end{itemstep}
115 \end{slide}}
116
117 \overlays{7}{
118 \begin{slide}{warning - numerical errors}
119   \begin{itemstep}
120     \item machine accuracy $\epsilon_m$
121           \begin{itemize}
122             \item ieee 64-bit floating point format: $v = -1^s 2^{-e} m$ \\
123                   \begin{tabular}{lll}
124                   $s$: & signe & 1 bit \\
125                   $m$: & mantissa & 52 bit \\
126                   $e$: & exponent & 11 bit \\
127                   \end{tabular}
128             \item $\epsilon_m$: smallest floating point with $1 + \epsilon_m \neq 1$ \\
129                   $\epsilon_m \approx 2.22 \times 10^{-16}$ \hspace{2pt} (roundoff error)
130           \end{itemize}
131     \item truncation error $\epsilon_t$
132           \begin{itemize}
133             \item discrete approximation of continuous quantity
134             \item persists even on hypothetical perfect computer ($\epsilon_m = 0$)
135             \item machine independent, characteristic of used algorithm
136           \end{itemize}
137   \end{itemstep}
138 \end{slide}}
139
140 \overlays{4}{
141 \begin{slide}{warning - recursive functions}
142   \begin{itemstep}
143     \item avoid recursive functions!
144           \verbatiminput{fak1.c}
145     \item better:
146           \verbatiminput{fak2.c}
147   \end{itemstep}
148 \end{slide}}
149
150 \begin{slide}{computational techniques}
151   \begin{minipage}{5.5cm}
152     \begin{itemize}
153       \item rough discretization
154       \item solution of linear algebraic equations
155       \item interpolation and extrapolation
156       \item integration of functions
157       \item evaluation of (special) functions
158       \item monte carlo methods
159     \end{itemize}
160   \end{minipage}
161   \begin{minipage}{5.5cm}
162     \begin{itemize}
163       \item eigensystems
164       \item spectral applications
165       \item modeling of data
166       \item ordinary differential equations
167       \item two point boundary value problems
168       \item partial differential \\
169             equations
170     \end{itemize}
171   \end{minipage}
172 \footnote{http://www.nr.com/}
173 \end{slide}
174
175 \overlays{3}{
176 \begin{slide}{first steps: rough discretization}
177   \begin{itemstep}
178     \item example: homogenous field of force $\vec{F} = (0,-mg)$ \\
179           \begin{tabular}{ll}
180           equation of motion: & $\vec{F} = m \vec{a} = m \frac{d^2 \vec{r}}{dt^2}$ \\
181           initial condition: & $\vec{r}(t=0) = \vec{r_0} = (x_0,y_0)$ \\
182                              & $\frac{d \vec{r}}{dt}|_{t=0} = (v_{x_0},v_{y_0})$ \\
183           \end{tabular}
184     \item algorithm using discretized time ($T = N \tau$):
185           \begin{tabular}{lll}
186           $x^1 = x_0;$ & $y^1 = y_0;$ & \\
187           $v^1_x = v_{x_0};$ & $v^1_y = v_{y_0};$ & \\
188           loop: & $x^2 = x^1 + \tau v^1_x;$ & $y^2 = y^1 + \tau v^1_y;$ \\
189                 & $v^2_x = v^1_x;$ & $v^2_y = v^1_y - g \tau;$ \\
190                 & $x^1 = x^2;$ & $y^1 = y^2$ \\
191                 & $v^1_x = v^2_x;$ & $v^1_y = v^2_y;$ \\
192           \end{tabular}
193     \item euler's method for solving o.d.e.
194   \end{itemstep}
195 \end{slide}}
196
197 \overlays{10}{
198 \begin{slide}{euler's method: error estimation}
199   \begin{itemstep}
200     \item truncation error $\epsilon_t$:
201           \begin{itemize}
202             \item $x_{t+\tau} = x(t) + v(t,x) \tau + O(\tau^2)$
203             \item period $T$: $O(\tau^{-1})$ steps $\Rightarrow \epsilon_t \sim O(\tau)$
204           \end{itemize}
205     \item machine accuracy:
206           \begin{itemize}
207              \item every floating point step: error of $O(\epsilon_m)$
208              \item $O(\tau^{-1})$ steps $\Rightarrow$ error of $O(\frac{\epsilon_m}{\tau})$
209           \end{itemize}
210     \item optimum:
211           \begin{itemize}
212             \item $\epsilon \sim \frac{\epsilon_m}{\tau} + \tau$
213             \item 64-bit: $\epsilon_m \sim 10^{-16} \Rightarrow \tau \sim 10^{-8}$
214             \item 32-bit: $\epsilon_m = 1.19 \times 10^{-7} \Rightarrow \tau \sim 3 \times 10^{-4}$
215           \end{itemize}
216   \end{itemstep}
217 \end{slide}}
218
219 \begin{slide}{euler's method: accuracy}
220   \includegraphics[width=10cm]{euler.eps}
221 \end{slide}
222
223 \overlays{9}{
224 \begin{slide}{monte carlo methods}
225   \begin{itemstep}
226     \item algorithms for solving computational problems using random numbers
227     \item deterministic pseudo-random sequences
228     \item applications:
229           \begin{itemize}
230             \item monte carlo integration
231             \item metropolis algorithm
232             \item simulated annealing
233           \end{itemize}
234     \item advantages:
235           \begin{itemize}
236             \item more efficient than other methods
237             \item no need fo simplifying assumptions
238           \end{itemize}
239   \end{itemstep}
240 \end{slide}}
241
242 \overlays{5}{
243 \begin{slide}{random number generator}
244 linear congruential generator:
245   \begin{itemstep}
246     \item $I_{j+1} = ( a I_{j} + c ) \, mod \, m$ \\
247           $a$: multiplier, $c$: increment \\
248           $m$: modulus, $I_0$: seed
249     \item minimal standard by park and miller: \\
250           $a = 7^5 = 16807, \quad m = 2^{31} - 1 = 2147483647, \quad c = 0$
251     \item always seed the rng
252   \end{itemstep}
253 \FromSlide{4}{
254 $\Rightarrow$ sequence of integers $\in [0,m[$ \\
255 }
256 \vspace{2pt}
257 \FromSlide{5}{
258 division by modulus $\Rightarrow$ uniform deviates : \\
259 \[
260   p(x)dx = \left\{
261   \begin{array}{ll}
262     dx & 0 \leq x < 1 \\
263     0  & \textrm{sonst}
264   \end{array} \right.
265 \]
266 }
267 \end{slide}}
268
269 \overlays{8}{
270 \begin{slide}{special deviates}
271   \begin{itemstep}
272     \item transformation method:
273           \begin{itemize}
274             \item arbitrary probability distribution $\rho(y)$
275             \item trafo: $p(x) dx = \rho(y) dy \Rightarrow x = \int_{- \infty}^y \rho(y) dy$
276             \item get inverse of $x(y) \Rightarrow y(x)$
277           \end{itemize}
278     \item rejection method: \\
279           \begin{minipage}{5cm}
280           \begin{itemize}
281             \item $p(x) \in [a,b]$ mit $p(x) \geq 0 \quad \forall x \in [a,b]$
282             \item uniformly distributed $x \in [a,b]$ und $y \in [0,p_m]$
283             \item if $y \leq p(x)$ use $x$, else reject $x$
284           \end{itemize}
285           \end{minipage}
286           \begin{minipage}{5cm}
287           \includegraphics[width=5cm]{rej_meth.eps} \\
288           \end{minipage}
289   \end{itemstep}
290 \end{slide}}
291
292 \overlays{5}{
293 \begin{slide}{monte carlo integration}
294   basics:
295   \begin{itemstep}
296     \item $I = \int_{\Omega} f d \Omega$
297     \item instead of regular $x_i$, choose them at random
298     \item $I \approx \Omega <f> \pm \Omega \sqrt{\frac{<f^2> - <f>^2}{N}}$ \\
299           $<f> = \frac{1}{N} \sum_{i=1}^{N} f(\vec{x_i})$ \\[6pt]
300           $<f^2> = \frac{1}{N} \sum_{i=1}^{N} f^2(\vec{x_i})$
301   \end{itemstep}
302 \FromSlide{4}{
303   example: gambling for $\pi$ \\
304 }
305 \FromSlide{5}{
306   \[
307   \begin{array}{l}
308   \pi = \int_{-1}^1 \int_{-1}^1 p(x,y) dx dy \approx \frac{4}{N} \sum_{i=1}^N p(x_i,y_i) \\[6pt]
309   \textrm{with } p(x,y) = \left\{
310     \begin{array}{ll}
311     1 & x^2 + y^2 \leq 1 \\
312     0 & \textrm{sonst}
313     \end{array} \right.
314   \end{array}
315   \]
316 }
317 \end{slide}}
318
319 \overlays{5}{
320 \begin{slide}{metropolis algorithm}
321 ising model:
322   \begin{itemstep}
323     \item $d$-dimensional periodic lattice
324     \item two possible states for magnetic moment at site $i$: \\
325           $\mu_i = \mu S_i \qquad S_i = \pm 1 \quad \forall i$
326     \item nearest neighbors moments interact, \\
327           interaction strength $\frac{J_{ij}}{\mu^2}$
328   \end{itemstep}
329 \FromSlide{4}{
330 $\Rightarrow$ hamiltonian: $H = - \sum_{(i,j)} J_{ij} S_i S_j$ \\
331 }
332 \FromSlide{5}{
333 partition function: \\
334 \[
335 Z = \sum_{i=1}^N e^{\frac{-E_i}{k_B T}} = Tr(e^{-\beta H})
336 \]
337 }
338 \end{slide}}
339
340 \overlays{2}{
341 \begin{slide}{metropolis algorithm}
342   \begin{itemstep}
343     \item importance sampling: \\
344           $<A> = \sum_i p_i A_i \approx \frac{1}{N} \sum_{i=1}^N A_i$ , with \\[6pt]
345           $\qquad p_i = \frac{e^{- \beta E_i}}{Z}$
346     \item detailed balance \\[6pt]
347           sufficient condition for equilibrium: \\
348           \[
349           W(A \rightarrow B) p(A) = W(B \rightarrow A) p(B)
350           \]
351           $\Rightarrow \frac{W(A \rightarrow B)}{W(B \rightarrow A)} = \frac{p(B)}{p(A)} = e^{\frac{- \Delta E}{k_B T}}$ \\[6pt]
352           with $\Delta E = E(B) - E(A)$
353   \end{itemstep}
354 \end{slide}}
355
356 \overlays{5}{
357 \begin{slide}{metropolis algorithm}
358   \begin{itemstep}
359     \item choose $W$: \\
360           \[
361           W(A \rightarrow B) = \left\{
362           \begin{array}{ll}
363             e^{- \beta \Delta E} & : \Delta E > 0 \\
364             1 & : \Delta E < 0
365           \end{array} \right.
366           \]
367     \item algorithm:
368           \begin{itemize}
369              \item visit every lattice site
370              \item calculate $\Delta E$ for spin flip
371              \item flip spin if $r \leq e^{\frac{-\Delta E}{k_B T}}$
372           \end{itemize}
373   \end{itemstep}
374 \end{slide}}
375
376 \begin{slide}{summary}
377   \begin{itemize}
378     \item importance of computational physics
379     \item things to keep in mind when doing computational physics
380     \item euler's method for solving o.d.e.
381     \item introduction to monte carlo methods
382   \end{itemize}
383 \end{slide}
384
385 \end{document}