1 ;***************************************************************************
\r
2 ;* A P P L I C A T I O N N O T E F O R T H E A V R F A M I L Y
\r
5 ;* File Name :"m103def.inc"
\r
6 ;* Title :Register/Bit Definitions for the ATmega103
\r
9 ;* Support telephone :+47 72 88 43 88 (ATMEL Norway)
\r
10 ;* Support fax :+47 72 88 43 99 (ATMEL Norway)
\r
11 ;* Support E-mail :avr@atmel.com
\r
12 ;* Target MCU :ATmega103
\r
15 ;* When including this file in the assembly program file, all I/O register
\r
16 ;* names and I/O register bit names appearing in the data book can be used.
\r
17 ;* In addition, the six registers forming the three data pointers X, Y and
\r
18 ;* Z have been assigned names XL - ZH. Highest RAM address for Internal
\r
19 ;* SRAM is also defined
\r
21 ;* The Register names are represented by their hexadecimal address.
\r
23 ;* The Register Bit names are represented by their bit number (0-7).
\r
25 ;* Please observe the difference in using the bit names with instructions
\r
26 ;* such as "sbr"/"cbr" (set/clear bit in register) and "sbrs"/"sbrc"
\r
27 ;* (skip if bit in register set/cleared). The following example illustrates
\r
30 ;* in r16,PORTB ;read PORTB latch
\r
31 ;* sbr r16,(1<<PB6)+(1<<PB5) ;set PB6 and PB5 (use masks, not bit#)
\r
32 ;* out PORTB,r16 ;output to PORTB
\r
34 ;* in r16,TIFR ;read the Timer Interrupt Flag Register
\r
35 ;* sbrc r16,TOV0 ;test the overflow flag (use bit#)
\r
36 ;* rjmp TOV0_is_set ;jump if set
\r
37 ;* ... ;otherwise do something else
\r
38 ;***************************************************************************
\r
40 ;***** Specify Device
\r
43 ;***** I/O Register Definitions
\r
111 ;***** Bit Definitions
\r
401 .equ RAMEND =$0FFF ;Last On-Chip SRAM Location
\r
402 .equ XRAMEND =$FFFF
\r
404 .equ FLASHEND=$FFFF
\r
406 .equ INT0addr=$002 ;External Interrupt0 Vector Address
\r
407 .equ INT1addr=$004 ;External Interrupt1 Vector Address
\r
408 .equ INT2addr=$006 ;External Interrupt2 Vector Address
\r
409 .equ INT3addr=$008 ;External Interrupt3 Vector Address
\r
410 .equ INT4addr=$00a ;External Interrupt4 Vector Address
\r
411 .equ INT5addr=$00c ;External Interrupt5 Vector Address
\r
412 .equ INT6addr=$00e ;External Interrupt6 Vector Address
\r
413 .equ INT7addr=$010 ;External Interrupt7 Vector Address
\r
414 .equ OC2addr =$012 ;Output Compare2 Interrupt Vector Address
\r
415 .equ OVF2addr=$014 ;Overflow2 Interrupt Vector Address
\r
416 .equ ICP1addr=$016 ;Input Capture1 Interrupt Vector Address
\r
417 .equ OC1Aaddr=$018 ;Output Compare1A Interrupt Vector Address
\r
418 .equ OC1Baddr=$01a ;Output Compare1B Interrupt Vector Address
\r
419 .equ OVF1addr=$01c ;Overflow1 Interrupt Vector Address
\r
420 .equ OC0addr =$01e ;Output Compare0 Interrupt Vector Address
\r
421 .equ OVF0addr=$020 ;Overflow0 Interrupt Vector Address
\r
422 .equ SPIaddr =$022 ;SPI Interrupt Vector Address
\r
423 .equ URXCaddr=$024 ;UART Receive Complete Interrupt Vector Address
\r
424 .equ UDREaddr=$026 ;UART Data Register Empty Interrupt Vector Address
\r
425 .equ UTXCaddr=$028 ;UART Transmit Complete Interrupt Vector Address
\r
426 .equ ADCCaddr=$02a ;ADC Conversion Complete Handle
\r
427 .equ EEWRaddr=$02c ;EEPROM Write Complete Handle
\r
428 .equ ACIaddr =$02e ;Analog Comparator Interrupt Vector Address
\r