1 ;***************************************************************************
\r
2 ;* A P P L I C A T I O N N O T E F O R T H E A V R F A M I L Y
\r
5 ;* File Name :"m83def.inc"
\r
6 ;* Title :Register/Bit Definitions for the ATmega83
\r
9 ;* Support telephone :+47 72 88 87 20 (ATMEL Norway)
\r
10 ;* Support fax :+47 72 88 87 18 (ATMEL Norway)
\r
11 ;* Support E-mail :avr@atmel.no
\r
12 ;* Target MCU :ATmega83
\r
15 ;* When including this file in the assembly program file, all I/O register
\r
16 ;* names and I/O register bit names appearing in the data book can be used.
\r
17 ;* In addition, the six registers forming the three data pointers X, Y and
\r
18 ;* Z have been assigned names XL - ZH. Highest RAM address for Internal
\r
19 ;* SRAM is also defined
\r
21 ;* The Register names are represented by their hexadecimal address.
\r
23 ;* The Register Bit names are represented by their bit number (0-7).
\r
25 ;* Please observe the difference in using the bit names with instructions
\r
26 ;* such as "sbr"/"cbr" (set/clear bit in register) and "sbrs"/"sbrc"
\r
27 ;* (skip if bit in register set/cleared). The following example illustrates
\r
30 ;* in r16,PORTB ;read PORTB latch
\r
31 ;* sbr r16,(1<<PB6)+(1<<PB5) ;set PB6 and PB5 (use masks, not bit#)
\r
32 ;* out PORTB,r16 ;output to PORTB
\r
34 ;* in r16,TIFR ;read the Timer Interrupt Flag Register
\r
35 ;* sbrc r16,TOV0 ;test the overflow flag (use bit#)
\r
36 ;* rjmp TOV0_is_set ;jump if set
\r
37 ;* ... ;otherwise do something else
\r
38 ;***************************************************************************
\r
40 ;***** Specify Device
\r
43 ;***** I/O Register Definitions
\r
96 .equ USR =$0b ; For compatibility with S8535
\r
98 .equ UCR =$0a ; For compatibility with S8535
\r
111 ;***** Bit Definitions
\r
152 .equ TWI_TST =1 ;Present in core test mode only. Write Only.
\r
436 .equ FLASHEND =$1FFF
\r
440 .equ BOOTSTART =$1E00 ;OBSOLETE!!! temporarily kept for compatibility
\r
441 ;.equ LARGEBOOTSTART =$0C00 ;largest boot block is 2KB
\r
442 ;.equ SMALLBOOTSTART =$0F80 ;smallest boot block is 256B
\r
443 .equ SMALLBOOTSTART =0b1111110000000 ;($1F80) smallest boot block is 256B
\r
444 .equ SECONDBOOTSTART =0b1111100000000 ;($1F00) second boot block size is 512B
\r
445 .equ THIRDBOOTSTART =0b1111000000000 ;($1E00) third boot block size is 1KB
\r
446 .equ LARGEBOOTSTART =0b1110000000000 ;($1C00) largest boot block is 2KB
\r
447 .equ PAGESIZE =64 ;number of WORDS in a page
\r
449 .equ INT0addr=$001 ;External Interrupt0 Vector Address
\r
450 .equ INT1addr=$002 ;External Interrupt1 Vector Address
\r
451 .equ OC2addr =$003 ;Output Compare2 Interrupt Vector Address
\r
452 .equ OVF2addr=$004 ;Overflow2 Interrupt Vector Address
\r
453 .equ ICP1addr=$005 ;Input Capture1 Interrupt Vector Address
\r
454 .equ OC1Aaddr=$006 ;Output Compare1A Interrupt Vector Address
\r
455 .equ OC1Baddr=$007 ;Output Compare1B Interrupt Vector Address
\r
456 .equ OVF1addr=$008 ;Overflow1 Interrupt Vector Address
\r
457 .equ OVF0addr=$009 ;Overflow0 Interrupt Vector Address
\r
458 .equ SPIaddr =$00a ;SPI Interrupt Vector Address
\r
459 .equ URXCaddr=$00b ;UART Receive Complete Interrupt Vector Address
\r
460 .equ UDREaddr=$00c ;UART Data Register Empty Interrupt Vector Address
\r
461 .equ UTXCaddr=$00d ;UART Transmit Complete Interrupt Vector Address
\r
462 .equ ADCCaddr=$00e ;ADC Interrupt Vector Address
\r
463 .equ ERDYaddr=$00f ;EEPROM Interrupt Vector Address
\r
464 .equ ACIaddr =$010 ;Analog Comparator Interrupt Vector Address
\r
465 .equ TWSIaddr=$011 ;Irq. vector address for Two-Wire Interface
\r