1 \documentclass[semhelv]{seminar}
4 \usepackage[german]{babel}
5 \usepackage[latin1]{inputenc}
6 \usepackage[T1]{fontenc}
10 \usepackage{calc} % Simple computations with LaTeX variables
11 \usepackage[hang]{caption2} % Improved captions
12 \usepackage{fancybox} % To have several backgrounds
14 \usepackage{fancyhdr} % Headers and footers definitions
15 \usepackage{fancyvrb} % Fancy verbatim environments
16 \usepackage{pstcol} % PSTricks with the standard color package
19 \graphicspath{{./img/}}
22 \usepackage{semlayer} % Seminar overlays
23 \usepackage{slidesec} % Seminar sections and list of slides
25 \input{seminar.bug} % Official bugs corrections
26 \input{seminar.bg2} % Unofficial bugs corrections
32 \extraslideheight{10in}
35 \def\slideleftmargin{.0in}
36 \def\sliderightmargin{0in}
37 \def\slidetopmargin{0in}
38 \def\slidebottommargin{.2in} % fucking slide number gone now :)
45 \includegraphics[height=1cm]{ifp.eps}
47 \includegraphics[height=2cm]{Lehrstuhl-Logo.eps}
52 Monte Carlo simulation study of a selforganization process leading
53 to ordered precipitate structures
56 F. Zirkelbach, M. H"aberlen, J. K. N. Lindner und B. Stritzker
67 \begin{picture}(300,30)
70 \item Cross-section TEM: selforganized $SiC_x$-precipitates
71 \item Model describing the selforganization process
72 \item Monte Carlo simulation
73 \item Comparison of experiment and simulation
74 \item Recipe for thick films of ordered laemllae
81 Cross-Section TEM image showing selforganized amorphous lamellar inclusions
85 \includegraphics[width=10cm]{k393abild1_e.eps}
86 $180 keV \textrm{ } C^+ \rightarrow Si(100)$, $150 \, ^{\circ} \mathrm{C}$, $4.3 \times 10^{17} cm^{-2}$
97 \includegraphics[width=8cm]{modell_ng_e.eps}
102 \item Supersaturation of $C$ in $c-Si$ \\
103 $\rightarrow$ {\bf Carbon induced} nucleation of spherical $SiC_x$-precipitates
104 \item High interfacial energy between $3C-SiC$ and $c-Si$\\
105 $\rightarrow$ {\bf Amorphous} precipitates
106 \item $20 - 30\,\%$ lower silicon density of $a-SiC_x$ compared to $c-Si$\\
107 $\rightarrow$ {\bf Lateral strain} (black arrows)
108 \item Implantation range near surface\\
109 $\rightarrow$ {\bf Relaxation} of {\bf vertical strain component}
110 \item Reduction of the carbon supersaturation in $c-Si$\\
111 $\rightarrow$ {\bf Carbon diffusion} into amorphous volumina (white arrows)
112 \item Remaining lateral strain\\
113 $\rightarrow$ {\bf Strain enhanced} lateral amorphization
114 \item Absence of crystalline neighbours (structural information)\\
115 $\rightarrow$ {\bf Stabilization} of amorphous inclusions {\bf against recrystallization}
124 {\bf Discretization of the target}
126 \includegraphics[width=8cm]{gitter_e.eps}
129 \item divided into cells with a cube length of $3 \, nm$
130 \item periodic boundary conditions in $x$,$y$-direction
138 {\bf TRIM collision statistics}
140 \includegraphics[width=8cm]{trim_coll_e.eps}
143 \item identical depth profiles for
145 collisions per depth and nuclear stopping power
146 \item mean constant energy loss per
153 Simulation algorithm\\
156 The simulation algorithm consists of the following three parts looped
157 $s$ times corresponding to a dose $D=s/(64\times64\times(3 \, nm)^2)$:\\
159 \item Amorphization / Recrystallization
160 \item Carbon incorporation
161 \item Diffusion / Sputtering
167 Amorphization / Recrystallization \\
170 \item random numbers distributed according to the nuclear energy loss\\
171 $\rightarrow$ determine the volume in which a collision occurs
172 \item compute local probability for amorphization / recyrstallization
173 \item let another random number decide ...
177 \displaystyle p_{c \rightarrow a}(\vec r) = \textcolor[rgb]{0,1,1}{p_{b}} \qquad + \qquad \textcolor{red}{p_{c} \, c_{Carbon}(\vec r)} \qquad + \textcolor[rgb]{0.5,0.25,0.12}{\sum_{amorphous \, neighbours} \frac{p_{s} \, c_{Carbon}(\vec{r'})}{(\vec r - \vec{r'})^2}} \\
179 \begin{picture}(70,15)(-10,0)
180 \bf \textcolor[rgb]{0,1,1}{normal (ballistic)}
182 \begin{picture}(100,15)(-15,0)
183 \bf \textcolor{red}{carbon inuced}
185 \begin{picture}(120,15)(-40,0)
186 \bf \textcolor[rgb]{0.5,0.25,0.12}{stress enhanced}
188 \begin{picture}(300,40)
190 p_{a \rightarrow c}(\vec r) = (1 - p_{c \rightarrow a}(\vec r)) \displaystyle \Big( 1 - \frac{\sum_{direct\, neighbours} \delta (\vec{r'})}{6} \Big) \, \textrm{, }
195 \delta (\vec r) = \left\{ \begin{array}{ll}
196 1 & \textrm{if volume $\vec r$ is amorphous} \\
207 \item random numbers distributed according to
208 the implantation profile to determine the
210 \item increase the amount of carbon atoms in
213 \begin{picture}(50,20)(0,0)\end{picture}\\
218 \item every $d_v$ steps transfer of a fraction $d_r$
219 of carbon atoms from crystalline volumina to
220 an amorphous neighbour volume
221 \item remove $3 \, nm$ surface layer after $n$ loops,
222 shift remaining cells $3 \, nm$ up and insert
223 an empty, crystalline $3 \, nm$ bottom layer
229 Comparison of experiment and simulation \\
232 \includegraphics[width=10cm]{dosis_entwicklung_ng_e_1-2.eps}
234 Simulation parameters:\\
235 $p_b=0.01$, $p_c=0.001 \times (3 \, nm)^3$,
236 $p_s=0.0001 \times (3 \, nm)^5$, $d_r=0.05$, $d_v=1 \times 10^6$.
241 Comparison of experiment and simulation \\
244 \includegraphics[width=10cm]{dosis_entwicklung_ng_e_2-2.eps}
246 Simulation parameters:\\
247 $p_b=0.01$, $p_c=0.001 \times (3 \, nm)^3$,
248 $p_s=0.0001 \times (3 \, nm)^5$, $d_r=0.05$, $d_v=1 \times 10^6$.
256 \item Simulation in good agreement with experimentally observed
257 formation and growth of the continuous amorphous layer
258 \item Lamellar precipitates and their evolution at the upper
259 a/c interface with increasing dose is reproduced
261 \begin{picture}(50,20)(0,0)\end{picture}\\
262 {\bf\color{red} Simulation is able to model the whole
263 depth region affected by the
269 Structural/compositional\\information \\
272 \item Fluctuation of the carbon\\
273 concentration in the region\\
275 \item Saturation limit of carbon\\
276 in c-$Si$ under given\\
277 implantation conditions\\
278 between $8$ and $10 \, at. \%$
280 \begin{picture}(0,0)(-145,60)
281 \includegraphics[height=8cm=]{ac_cconc_ver2_e.eps}
287 Structural/compositional\\information \\
290 \item Complementarily arranged and\\
291 alternating sequence of layers\\
292 with high and low amount of\\
294 \item Carbon accumulation in the\\
297 \begin{picture}(0,0)(-155,60)
298 \includegraphics[height=8cm]{97_98_ng_e.eps}
304 Recipe for thick films of ordered lamellae \\
308 Crystalline silicon target with a nearly constant carbon
309 concentration at $10 \, at. \%$ in a $500 \, nm$ thick
311 \includegraphics[width=8cm]{multiple_impl_cp_e.eps}
313 \item Multiple energy ($180$-$10 \, keV$) $C^+$ $\rightarrow$ $Si$ implantation
314 \item $T_i=500 \, ^{\circ} \mathrm{C}$, to prevent amorphization
320 Recipe for thick films of ordered lamellae \\
324 $2 \, MeV$ $C^+$ $\rightarrow$ $Si$ irradiation step at
325 $150 \, ^{\circ} \mathrm{C}$
327 \item This does not significantly change the carbon
328 concentration in the top $500 \, nm$
329 \item Nearly constant nuclear energy loss in the top $700 \, nm$
332 \includegraphics[width=8cm]{multiple_impl_e_ver2.eps}\\
333 {\bf\color{blue} Starting point for materials showing strong photoluminescence}\\
334 {\scriptsize Dihu Chen et al. Opt. Mater. 23 (2003) 65.}
342 \item Observation of selforganized nanometric precipitates by ion irradiation\\
343 $C \rightarrow Si \qquad T_{i}: 150 - 350 \, ^{\circ} \mathrm{C} \qquad D \le 8 \times 10^{17} cm^{-2}$
344 \item Model proposed describing the selforganization process
345 \item Model implemented in a Monte Carlo simulation code
346 \item Modelling of the complete depth region affected by the irradiation process
347 \item Simulation is able to reproduce entire amorphous phase formation
348 \item Precipitation process gets traceable by simulation
349 \item Detailed structural/compositional information available by simulation
350 \item Recipe proposed for the formation of thick films of lamellar structure
356 Thank you for your attention!\\
357 Thanks for accepting me as a guest!\\
360 \ldots another recipe I propose:\\
362 \item {\color{blue} 06 cl vodka}
363 \item {\color{blue} 03 cl peach liqueur}
364 \item {\color{blue} 03 cl amaretto}
365 \item {\color{red} 16 cl black currant juice}
366 \item {\color{red} dash of citron}
367 \item {\color{red} 3-4 ice cubes}
369 $\Rightarrow$ Killer Cool Aid