]> hackdaworld.org Git - lectures/latex.git/blob - nlsop/poster/nlsop_ibmm2006_ver2.tex
beta
[lectures/latex.git] / nlsop / poster / nlsop_ibmm2006_ver2.tex
1 \documentclass[portrait,a0b,final]{a0poster}
2 \usepackage{epsf,psfig,pstricks,multicol,pst-grad,color}
3 \usepackage{graphicx,amsmath,amssymb}
4 \graphicspath{{../img/}}
5 \usepackage[german]{babel}
6
7 \begin{document}
8
9 \hyphenation{pho-to-lu-mi-nescence in-clu-sions}
10
11 % Fliessenden Hintergrund von RGB-Farbe 1. .98 .98 nach 1. .85 .85
12 % und wieder nach  1. .98 .98 (1. .85 .85 wird nach 0.1=10% des Hinter-
13 % grunds angenommen)
14 % Achtung Werte unter .8 verbrauchen zu viel Tinte!!!
15
16 %\background{.95 .95 1.}{.78 .78 1.}{0.05}
17 %\background{.50 .50 .50}{.85 .85 .85}{0.5}
18 \background{.40 .48 .71}{.99 .99 .99}{0.5}
19 %\newrgbcolor{blue1}{.9 .9 1.}
20
21 % Groesse der einzelnen Spalten als Anteil der Gesamt-Textbreite
22 \renewcommand{\columnfrac}{.31}
23
24 % header
25 \vspace{-1.2cm}
26 \begin{header}
27   \begin{minipage} {.13\textwidth}
28         \includegraphics[height=11cm]{uni-logo.eps}
29   \end{minipage} \hfill
30   \begin{minipage}   {.73\textwidth}
31      \centerline{{\Huge \bfseries Monte Carlo simulation study of a selforganisation}}
32      \centerline{{\Huge \bfseries process leading to ordered precipitate structures}}
33      \vspace*{1cm}
34      \centerline{\huge\textsc {\underline{F.~Zirkelbach}}, M.~H"aberlen,
35                                J.~K.~N.~Lindner, B.~Stritzker}
36      \vspace*{1cm}
37      \centerline{\Large Institut f"ur Physik, Universit"at Augsburg,
38                         D-86135 Augsburg, Germany}
39   \end{minipage} \hfill
40   \begin{minipage} {.13\textwidth}
41       \includegraphics[height=10cm]{Lehrstuhl-Logo.eps}
42   \end{minipage} \hfill
43 \end{header}
44
45 \begin{poster}
46
47 \vspace{-0.35cm}
48 \begin{pcolumn}
49   \begin{pbox}
50     \section*{Motivation}
51         {\bf
52         Experimentally observed selforganisation process at high-dose carbon
53         implantations under certain implantation conditions.}
54         \begin{itemize}
55                 \item Regularly spaced, nanometric spherical and lamellar
56                       amorphous inclusions at the upper a/c interface
57                 \begin{center}
58                         \includegraphics[width=20cm]{k393abild1_e.eps}
59                 \end{center}
60                 Cross-section TEM bright-field images:\\
61                 $180 \, keV$ $C^+ \rightarrow Si$,
62                 $T_i=150 \, ^{\circ} \mathrm{C}$,
63                 Dose: $4.3 \times 10^{17} \, cm^{-2}$\\
64                 Amorphous inclusions appear white on darker backgrounds\\
65                 L: amorphous lamellae, S: spherical amorphous inclusions
66                 \item Carbon accumulation in amorphous volumes
67                 \begin{center}
68                         \includegraphics[width=20cm]{eftem.eps}
69                 \end{center}
70                 Bright-field TEM image and respective EFTEM $C$ map:\\
71                 $180 \, keV$ $C^+ \rightarrow Si$,
72                 $T_i=200 \, ^{\circ} \mathrm{C}$,
73                 Dose: $4.3 \times 10^{17} \, cm^{-2}$\\
74                 yellow/blue: high/low concentrations of carbon
75         \end{itemize}
76         {\bf
77         Similarly ordered precipitate nanostructures also
78         observed for a number of ion/target combinations for which the
79         material undergoes drastic density change upon amorphisation.}\\
80         {\scriptsize
81         A. H. van Ommen, Nucl. Instr. and Meth. B 39 (1989) 194.\\
82         E. D. Specht et al., Nucl. Instr. and Meth. B 84 (1994) 323.\\
83         M. Ishimaru et al., Nucl. Instr. and Meth. B 166-167 (2000) 390.}
84   \end{pbox}
85   \vspace{-1.4cm}
86   \begin{pbox}
87     \section*{Model}
88         {\bf
89         Model schematically displaying the formation of ordered lamellae
90         with increasing dose.}
91         \vspace{1cm}
92         \begin{center}
93                 \includegraphics[width=20cm]{modell_ng_e.eps}
94         \end{center}
95         \begin{itemize}
96 \item Supersaturation of $C$ in $c-Si$\\
97       $\rightarrow$ {\bf Carbon induced} nucleation of spherical
98       $SiC_x$-precipitates
99 \item High interfacial energy between $3C-SiC$ and $c-Si$\\
100       $\rightarrow$ {\bf Amorphous} precipitates
101 \item $20 - 30\,\%$ lower silicon density of $a-SiC_x$ compared to $c-Si$\\
102       $\rightarrow$ {\bf Lateral strain} (black arrows)
103 \item Implantation range near surface\\
104       $\rightarrow$ {\bf Relaxation} of {\bf vertical strain component}
105 \item Reduction of the carbon supersaturation in $c-Si$\\
106       $\rightarrow$ {\bf Carbon diffusion} into amorphous volumina
107       (white arrows)
108 \item Remaining lateral strain\\
109       $\rightarrow$ {\bf Strain enhanced} lateral amorphisation
110 \item Absence of crystalline neighbours (structural information)\\
111       $\rightarrow$ {\bf Stabilisation} of amorphous inclusions 
112       {\bf against recrystallisation}
113         \end{itemize}
114   \end{pbox}
115   \vspace{-1.5cm}
116   \begin{pbox}
117     \section*{Simulation}
118         \begin{minipage}[t]{0.5\textwidth}
119                 {\bf Discretisation of the target}
120                 \begin{center}
121                         \includegraphics[width=12cm]{gitter_e.eps}
122                 \end{center}
123                 \vspace{2cm}
124                 \begin{itemize}
125                         \item divided into cells with a cube length of $3 \, nm$
126                         \item periodic boundary conditions in $x$,$y$-direction
127                 \end{itemize}
128         \end{minipage}
129         \begin{minipage}[t]{0.5\textwidth}
130                 {\bf TRIM collision statistics}
131                 \begin{center}
132                         \includegraphics[width=12cm]{trim_coll_e.eps}
133                 \end{center}
134                 \begin{itemize}
135                         \item[] $\Rightarrow$ identical depth profiles for
136                                  number of
137                                 collisions per depth and nuclear stopping power
138                         \item[] $\Rightarrow$ mean constant energy loss per
139                                  collision
140                 \end{itemize}
141         \end{minipage}
142   \end{pbox}
143
144
145 \end{pcolumn}
146 \begin{pcolumn}
147
148   \begin{pbox}
149     \section*{Simulation algorithm}
150     {\bf
151     The simulation algorithm consists of the following three parts looped 
152     $s$ times corresponding to a dose
153     $D=s/(64\times64\times(3 \, nm)^2)$:}\\
154 \begin{minipage}{0.10\textwidth}
155         \begin{picture}(0,0)(0,600)
156                 \includegraphics[height=40.0cm]{loop-arrow_ver2.eps}
157         \end{picture}%
158 \end{minipage}
159 \begin{minipage}{0.90\textwidth}
160         \vspace{1cm}
161         \subsection*{1. Amorphisation/Recrystallisation}
162         \begin{itemize}
163                 \item random numbers distributed according to
164                       the nuclear energy loss to determine the
165                       volume in which a collision occurs
166                 \item compute local probability for amorphisation:\\
167                       %\vspace{0.1cm}
168
169                       \centerline{\fcolorbox[rgb]{0.,0.,0.}{1.,1.,.8}{
170                       \begin{minipage}{20cm}
171 \[
172  p_{c \rightarrow a}(\vec{r}) = {\color{green} p_b} + {\color{blue} p_c c_C(\vec{r})} + {\color{red} \sum_{\textrm{amorphous neighbours}} \frac{p_s c_C(\vec{r'})}{(r-r')^2}}
173 \]
174                       \end{minipage}
175                       }}
176                       \vspace{1cm}
177                       and recrystallisation:\\
178                       %\vspace{0.1cm}
179
180                       \centerline{\fcolorbox[rgb]{0.,0.,0.}{1.,1.,.8}{
181                       \begin{minipage}{20cm}
182 \[
183 p_{a \rightarrow c}(\vec r) = (1 - p_{c \rightarrow a}(\vec r)) \Big(1 - \frac{\sum_{direct \, neighbours} \delta (\vec{r'})}{6} \Big) \, \textrm{,}
184 \]
185 \[
186 \delta (\vec r) = \left\{
187 \begin{array}{ll}
188         1 & \textrm{if volume at position $\vec r$ is amorphous} \\
189         0 & \textrm{otherwise} \\
190 \end{array}
191 \right.
192 \]
193                       \end{minipage}
194                       }}
195                       \vspace{1cm}
196                 \item loop for the mean amount of hits by the ion
197         \end{itemize}
198         Three contributions to the amorphisation process controlled by:
199         \begin{itemize}
200                 \item {\color{green} $p_b$} normal 'ballistic' amorphisation
201                 \item {\color{blue} $p_c$} carbon induced amorphisation
202                 \item {\color{red} $p_s$} stress enhanced amorphisation
203         \end{itemize}
204         \subsection*{2. Carbon incorporation}
205                 \begin{itemize}
206                         \item random numbers distributed according to
207                               the implantation profile to determine the
208                               incorporation volume
209                         \item increase the amount of carbon atoms in
210                               that volume
211                 \end{itemize}
212         \subsection*{3. Diffusion/Sputtering}
213                 {\bf
214                 Simulation parameters $d_v$, $d_r$ and $n$ control the
215                 diffusion and sputtering process.}
216                 \begin{itemize}
217                         \item every $d_v$ steps transfer of a fraction $d_r$
218                               of carbon atoms from crystalline volumina to
219                               an amorphous neighbour volume
220                         \item remove $3 \, nm$ surface layer after $n$ loops,
221                               shift remaining cells $3 \, nm$ up and insert
222                               an empty, crystalline $3 \, nm$ bottom layer
223                 \end{itemize}
224 \end{minipage}%
225   \end{pbox}
226   \vspace{-0.7cm}
227   \begin{pbox}
228         \section*{Comparison of experiment and simulation}
229          \begin{center}
230                 \includegraphics[width=25cm]{dosis_entwicklung_ng_e_1-2.eps}
231         \end{center}
232         \begin{center}
233                 \includegraphics[width=25cm]{dosis_entwicklung_ng_e_2-2.eps}
234         \end{center}
235         Simulation parameters:\\
236         $p_b=0.01$, $p_c=0.001 \times (3 \, nm)^3$,
237         $p_s=0.0001 \times (3 \, nm)^5$, $d_r=0.05$, $d_v=1 \times 10^6$.
238         \\[0.7cm]{\bf Conclusion:}
239         \begin{itemize}
240                 \item Simulation in good agreement with experimentally observed
241                       formation and growth of the continuous amorphous layer
242                 \item Lamellar precipitates and their evolution at the upper
243                       a/c interface with increasing dose is reproduced
244         \end{itemize}
245         {\bf\color{red} Simulation is able to model the whole
246                         depth region affected by the 
247                         irradiation process}
248   \end{pbox}
249 \end{pcolumn}
250 \begin{pcolumn}
251
252   \begin{pbox}
253         \section*{Structural/compositional information}
254         \begin{minipage}[t]{0.57\textwidth}
255                 \includegraphics[height=15cm=]{ac_cconc_ver2_e.eps}
256                 \begin{minipage}[t]{0.9\textwidth}
257                 \vspace{-0.45cm}
258                 \begin{itemize}
259                         \item Fluctuation of the carbon concentration in the
260                               region of the lamellae
261                         \item Saturation limit of carbon in c-$Si$ under given
262                               implantation conditions between $8$ and
263                               $10 \, at. \%$
264                 \end{itemize}
265                 \end{minipage}%
266         \end{minipage}%
267         \begin{minipage}[t]{0.43\textwidth}
268                 \includegraphics[height=15cm]{97_98_ng_e.eps}
269                 %\includegraphics[height=13cm]{gitter_e.eps}
270                 %\includegraphics[height=15cm=]{test_foo.eps}
271                 \begin{itemize}
272                         \item Complementarily arranged and alternating sequence
273                               of layers with high and low amount of amorphous
274                               regions
275                         \item Carbon accumulation in the amorphous phase
276                 \end{itemize}
277         \end{minipage}
278   \end{pbox}
279   \vspace{-1.4cm}
280   \begin{pbox}
281         \section*{Recipe for thick films of ordered lamellae}
282         \begin{minipage}{0.33\textwidth}
283                 {\bf Prerequisites:}\\
284                 Crystalline silicon target with a nearly constant carbon
285                 concentration at $10 \, at. \%$ in a $500 \, nm$ thick
286                 surface layer   
287         \end{minipage}
288         \begin{minipage}{0.65\textwidth}
289                 \begin{center}
290                         \includegraphics[width=15cm]{multiple_impl_cp_e.eps}
291                 \end{center}
292         \end{minipage}
293         {\bf Creation:}
294         \begin{itemize}
295                 \item Multiple energy ($180$-$10 \, keV$) $C^+$ $\rightarrow$
296                       $Si$ implantation
297                 \item $T_i=500 \, ^{\circ} \mathrm{C}$, to prevent amorphisation
298         \end{itemize}
299         \vspace{1cm}
300         {\bf Stirring up:}\\[0.5cm]
301         $2 \, MeV$ $C^+$ $\rightarrow$ $Si$ irradiation step at
302         $150 \, ^{\circ} \mathrm{C}$
303         \begin{itemize}
304                 \item This does not significantly change the carbon
305                       concentration in the top $500 \, nm$
306                 \item Nearly constant nuclear energy loss in the top $700 \, nm$
307                       region
308         \end{itemize}
309         \vspace{1cm}
310         {\bf Result:}
311         \vspace{0.7cm}
312         \begin{center}
313                 \includegraphics[width=25cm]{multiple_impl_e_ver2.eps}
314         \end{center}
315         \begin{itemize}
316                 \item Already ordered structures after $100 \times 10^6$ steps
317                       corresponding to a dose of $D=2.7 \times 10^{17} cm^{-2}$
318                 \item More defined structures with increasing dose
319         \end{itemize}
320         {\bf\color{blue} Starting point for materials showing strong
321                         photoluminescence}\\
322         {\scriptsize Dihu Chen et al. Opt. Mater. 23 (2003) 65.}
323   \end{pbox}
324   \vspace{-1.4cm}
325   \begin{pbox}
326         \section*{Conclusions}
327                 \begin{itemize}
328                         \item Observation of selforganised nanometric
329                               precipitates by ion irradiation
330                         \item Model proposed describing the selforganisation
331                               process
332                         \item Model implemented in a Monte Carlo simulation code
333                         \item Modelling of the complete depth region affected
334                               by the irradiation process
335                         \item Simulation is able to reproduce entire amorphous
336                               phase formation
337                         \item Precipitation process gets traceable by simulation
338                         \item Detailed structural/compositional information
339                               available by simulation
340                         \item Recipe proposed for the formation of thick films
341                               of lamellar structure
342                 \end{itemize}
343   \end{pbox}
344   \vspace{-1.4cm}
345   \begin{pbox}
346         %\section*{Literature}
347         {\bf Literature}\\
348                 {\scriptsize
349                 F. Zirkelbach, M. H"aberlen, J. K. N. Lindner,
350                 B. Stritzker. Comp. Mater. Sci. 33 (2005) 310.\\
351                 F. Zirkelbach, M. H"aberlen, J. K. N. Lindner,
352                 B. Stritzker. Nucl. Instr. and Meth. B 242 (2006) 679.}
353   \end{pbox}
354
355 \end{pcolumn}
356 \end{poster}
357 \end{document}
358