2 \documentclass[a4paper,11pt]{article}
3 \usepackage[activate]{pdfcprot}
7 \usepackage[german]{babel}
8 \usepackage[latin1]{inputenc}
9 \usepackage[T1]{fontenc}
13 \usepackage[dvips]{graphicx}
14 \graphicspath{{./img/}}
20 \setlength{\headheight}{0mm} \setlength{\headsep}{0mm}
21 \setlength{\topskip}{-10mm} \setlength{\textwidth}{17cm}
22 \setlength{\oddsidemargin}{-10mm}
23 \setlength{\evensidemargin}{-10mm} \setlength{\topmargin}{-1cm}
24 \setlength{\textheight}{26cm} \setlength{\headsep}{0cm}
30 {\LARGE {\bf Molecular dynamics simulation study
31 of the silicon carbide precipitation process}\\}
33 \textsc{\Large \underline{F. Zirkelbach}$^1$, J. K. N. Lindner$^1$,
34 K. Nordlund$^2$, B. Stritzker$^1$}\\
36 $^1$ Experimentalphysik IV, Institut f"ur Physik, Universit"at Augsburg,\\
37 Universit"atsstr. 1, D-86135 Augsburg, Germany\\
39 $^2$ Accelerator Laboratory, Department of Physical Sciences,
40 University of Helsinki,\\
41 Pietari Kalmink. 2, 00014 Helsinki, Finland\\
47 The precipitation process of silicon carbide in heavily carbon doped silicon is not yet understood for the most part.
48 High resolution transmission electron microscopy indicates that in a first step carbon atoms form $C-Si$ dumbbells on regular $Si$ lattice sites which agglomerate into large clusters.
49 In a second step, when the cluster size reaches a radius of a few $nm$, the high interfacial energy due to the $SiC$/$Si$ lattice misfit of almost $20 \, \%$ is overcome and the precipitation occurs.
50 A molecular dynamics simulation approach is used to gain information of the precipitation process on the atomic level.
51 A newly parametrized Tersoff like bond-order potential is used to model the system appropriately.
52 The present work discusses the first results gained by the molecular dynamics simulation.