2 %\documentclass[landscape,semhelv,draft]{seminar}
3 \documentclass[landscape,semhelv]{seminar}
6 \usepackage[greek,german]{babel}
7 \usepackage[latin1]{inputenc}
8 \usepackage[T1]{fontenc}
14 \usepackage{calc} % Simple computations with LaTeX variables
15 \usepackage{caption} % Improved captions
16 \usepackage{fancybox} % To have several backgrounds
18 \usepackage{fancyhdr} % Headers and footers definitions
19 \usepackage{fancyvrb} % Fancy verbatim environments
20 \usepackage{pstricks} % PSTricks with the standard color package
32 \graphicspath{{../img/}}
36 \usepackage[setpagesize=false]{hyperref}
42 \usepackage{semlayer} % Seminar overlays
43 \usepackage{slidesec} % Seminar sections and list of slides
45 \input{seminar.bug} % Official bugs corrections
46 \input{seminar.bg2} % Unofficial bugs corrections
53 %\usepackage{cmbright}
54 %\renewcommand{\familydefault}{\sfdefault}
55 %\usepackage{mathptmx}
59 %\newrgbcolor{hred}{0.9 0.13 0.13}
60 %\newrgbcolor{hblue}{0.13 0.13 0.9}
61 \newrgbcolor{hred}{1.0 0.0 0.0}
62 \newrgbcolor{hblue}{0.0 0.0 1.0}
66 \extraslideheight{10in}
71 % specify width and height
76 \def\slidetopmargin{-0.15cm}
78 \newcommand{\ham}{\mathcal{H}}
79 \newcommand{\pot}{\mathcal{V}}
80 \newcommand{\foo}{\mathcal{U}}
81 \newcommand{\vir}{\mathcal{W}}
84 \renewcommand\labelitemii{{\color{gray}$\bullet$}}
87 \renewcommand{\phi}{\varphi}
90 \newcommand{\RM}[1]{\MakeUppercase{\romannumeral #1{}}}
93 \newrgbcolor{si-yellow}{.6 .6 0}
94 \newrgbcolor{hb}{0.75 0.77 0.89}
95 \newrgbcolor{lbb}{0.75 0.8 0.88}
96 \newrgbcolor{hlbb}{0.825 0.88 0.968}
97 \newrgbcolor{lachs}{1.0 .93 .81}
100 \newcommand{\headphd}{
101 \begin{pspicture}(0,0)(0,0)
102 \rput(6.0,0.2){\psframebox[fillstyle=gradient,gradbegin=hb,gradend=white,gradlines=1000,gradmidpoint=1,linestyle=none]{
103 \begin{minipage}{14cm}
112 \newcommand{\si}{Si$_{\text{i}}${}}
113 \newcommand{\ci}{C$_{\text{i}}${}}
114 \newcommand{\cs}{C$_{\text{sub}}${}}
115 \newcommand{\degc}[1]{\unit[#1]{$^{\circ}$C}{}}
116 \newcommand{\distn}[1]{\unit[#1]{nm}{}}
117 \newcommand{\dista}[1]{\unit[#1]{\AA}{}}
118 \newcommand{\perc}[1]{\unit[#1]{\%}{}}
120 % no vertical centering
132 A B C D E F G H G F E D C B A
150 Atomistic simulation study on silicon carbide\\[0.2cm]
151 precipitation in silicon\\
158 \textsc{Frank Zirkelbach}
162 Defense of doctor's thesis
171 % no vertical centering
174 % skip for preparation
179 % motivation / properties / applications of silicon carbide
187 \begin{pspicture}(0,0)(13.5,5)
189 \psframe*[linecolor=hb](-0.2,0)(12.9,5)
191 \pspolygon[linecolor=hlbb,fillcolor=hlbb,fillstyle=solid](5.2,1)(6.5,1)(6.5,3)(5.2,3)
192 \pspolygon[linecolor=hlbb,fillcolor=hlbb,fillstyle=solid](6.4,0.5)(7.7,2)(7.7,2)(6.4,3.5)
194 \rput[lt](0,4.6){\color{gray}PROPERTIES}
196 \rput[lt](0.3,4){wide band gap}
197 \rput[lt](0.3,3.5){high electric breakdown field}
198 \rput[lt](0.3,3){good electron mobility}
199 \rput[lt](0.3,2.5){high electron saturation drift velocity}
200 \rput[lt](0.3,2){high thermal conductivity}
202 \rput[lt](0.3,1.5){hard and mechanically stable}
203 \rput[lt](0.3,1){chemically inert}
205 \rput[lt](0.3,0.5){radiation hardness}
207 \rput[rt](12.7,4.6){\color{gray}APPLICATIONS}
209 \rput[rt](12.5,3.85){high-temperature, high power}
210 \rput[rt](12.5,3.5){and high-frequency}
211 \rput[rt](12.5,3.15){electronic and optoelectronic devices}
213 \rput[rt](12.5,2.35){material suitable for extreme conditions}
214 \rput[rt](12.5,2){microelectromechanical systems}
215 \rput[rt](12.5,1.65){abrasives, cutting tools, heating elements}
217 \rput[rt](12.5,0.85){first wall reactor material, detectors}
218 \rput[rt](12.5,0.5){and electronic devices for space}
222 \begin{picture}(0,0)(5,-162)
223 \includegraphics[height=2.2cm]{3C_SiC_bs.eps}
225 \begin{picture}(0,0)(-120,-162)
226 \includegraphics[height=2.2cm]{nasa_600c_led.eps}
228 \begin{picture}(0,0)(-270,-162)
229 \includegraphics[height=2.2cm]{6h-sic_3c-sic.eps}
232 \begin{picture}(0,0)(10,65)
233 \includegraphics[height=2.8cm]{sic_switch.eps}
235 %\begin{picture}(0,0)(-243,65)
236 \begin{picture}(0,0)(-110,65)
237 \includegraphics[height=2.8cm]{ise_99.eps}
239 %\begin{picture}(0,0)(-135,65)
240 \begin{picture}(0,0)(-100,65)
241 \includegraphics[height=1.2cm]{infineon_schottky.eps}
243 \begin{picture}(0,0)(-233,65)
244 \includegraphics[height=2.8cm]{solar_car.eps}
255 IBS of epitaxial single crystalline 3C-SiC
264 \item \underline{Implantation step 1}\\[0.1cm]
265 Almost stoichiometric dose | \unit[180]{keV} | \degc{500}\\
266 $\Rightarrow$ Epitaxial {\color{blue}3C-SiC} layer \&
267 {\color{blue}precipitates}
268 \item \underline{Implantation step 2}\\[0.1cm]
269 Low remaining amount of dose | \unit[180]{keV} | \degc{250}\\
271 Destruction/Amorphization of precipitates at layer interface
272 \item \underline{Annealing}\\[0.1cm]
273 \unit[10]{h} at \degc{1250}\\
274 $\Rightarrow$ Homogeneous 3C-SiC layer with sharp interfaces
278 \begin{minipage}{6.9cm}
279 \includegraphics[width=7cm]{ibs_3c-sic.eps}\\[-0.4cm]
282 XTEM: single crystalline 3C-SiC in Si\hkl(1 0 0)
286 \begin{minipage}{5cm}
288 \begin{pspicture}(0,0)(0,0)
290 \psframebox[fillstyle=solid,fillcolor=white,linecolor=blue,linestyle=solid]{
291 \begin{minipage}{3.3cm}
294 3C-SiC precipitation\\
295 not yet fully understood
299 % \renewcommand\labelitemi{$\Rightarrow$}
300 % Details of the SiC precipitation
302 % \item significant technological progress\\
303 % in SiC thin film formation
304 % \item perspectives for processes relying\\
305 % upon prevention of SiC precipitation
309 \rput(-5.3,5.5){\pnode{h0}}
310 \rput(-1.95,5.5){\pnode{h1}}
311 \ncline[linecolor=blue]{-}{h0}{h1}
312 \ncline[linecolor=blue]{->}{h1}{box}
323 Supposed precipitation mechanism of SiC in Si
331 \begin{minipage}{3.6cm}
333 Si \& SiC lattice structure\\[0.1cm]
334 \includegraphics[width=2.3cm]{sic_unit_cell.eps}
337 \begin{minipage}{1.7cm}
338 \underline{Silicon}\\
339 {\color{yellow}$\bullet$} Si | {\color{gray}$\bullet$} Si\\
340 $a=\unit[5.429]{\\A}$\\
341 $\rho^*_{\text{Si}}=\unit[100]{\%}$
343 \begin{minipage}{1.7cm}
344 \underline{Silicon carbide}\\
345 {\color{yellow}$\bullet$} Si | {\color{gray}$\bullet$} C\\
346 $a=\unit[4.359]{\\A}$\\
347 $\rho^*_{\text{Si}}=\unit[97]{\%}$
353 \begin{minipage}{4.1cm}
355 \includegraphics[width=3.3cm]{tem_c-si-db.eps}
359 \begin{minipage}{4.0cm}
361 \includegraphics[width=3.3cm]{tem_3c-sic.eps}
367 \begin{minipage}{4.0cm}
369 C-Si dimers (dumbbells)\\[-0.1cm]
374 \begin{minipage}{4.1cm}
376 Agglomeration of C-Si dumbbells\\[-0.1cm]
377 $\Rightarrow$ dark contrasts
381 \begin{minipage}{4.0cm}
383 Precipitation of 3C-SiC in Si\\[-0.1cm]
384 $\Rightarrow$ Moir\'e fringes\\[-0.1cm]
385 \& release of Si self-interstitials
391 \begin{minipage}{4.0cm}
393 \includegraphics[width=3.3cm]{sic_prec_seq_01.eps}
397 \begin{minipage}{4.1cm}
399 \includegraphics[width=3.3cm]{sic_prec_seq_02.eps}
403 \begin{minipage}{4.0cm}
405 \includegraphics[width=3.3cm]{sic_prec_seq_03.eps}
409 \begin{pspicture}(0,0)(0,0)
410 \psline[linewidth=2pt]{->}(8.3,2)(8.8,2)
411 \psellipse[linecolor=blue](11.1,6.0)(0.3,0.5)
412 \rput{-20}{\psellipse[linecolor=blue](3.1,8.2)(0.3,0.5)}
413 \psline[linewidth=2pt]{->}(3.9,2)(4.4,2)
414 \rput(11.8,0.3){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=hb]{
415 $4a_{\text{Si}}=5a_{\text{SiC}}$
417 \rput(11.5,8){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=hb]{
418 \hkl(h k l) planes match
420 \rput(8.5,6.2){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=hb]{
431 Supposed precipitation mechanism of SiC in Si
439 \begin{minipage}{3.6cm}
441 Si \& SiC lattice structure\\[0.1cm]
442 \includegraphics[width=2.3cm]{sic_unit_cell.eps}
445 \begin{minipage}{1.7cm}
446 \underline{Silicon}\\
447 {\color{yellow}$\bullet$} Si | {\color{gray}$\bullet$} Si\\
448 $a=\unit[5.429]{\\A}$\\
449 $\rho^*_{\text{Si}}=\unit[100]{\%}$
451 \begin{minipage}{1.7cm}
452 \underline{Silicon carbide}\\
453 {\color{yellow}$\bullet$} Si | {\color{gray}$\bullet$} C\\
454 $a=\unit[4.359]{\\A}$\\
455 $\rho^*_{\text{Si}}=\unit[97]{\%}$
461 \begin{minipage}{4.1cm}
463 \includegraphics[width=3.3cm]{tem_c-si-db.eps}
467 \begin{minipage}{4.0cm}
469 \includegraphics[width=3.3cm]{tem_3c-sic.eps}
475 \begin{minipage}{4.0cm}
477 C-Si dimers (dumbbells)\\[-0.1cm]
478 on Si interstitial sites
482 \begin{minipage}{4.1cm}
484 Agglomeration of C-Si dumbbells\\[-0.1cm]
485 $\Rightarrow$ dark contrasts
489 \begin{minipage}{4.0cm}
491 Precipitation of 3C-SiC in Si\\[-0.1cm]
492 $\Rightarrow$ Moir\'e fringes\\[-0.1cm]
493 \& release of Si self-interstitials
499 \begin{minipage}{4.0cm}
501 \includegraphics[width=3.3cm]{sic_prec_seq_01.eps}
505 \begin{minipage}{4.1cm}
507 \includegraphics[width=3.3cm]{sic_prec_seq_02.eps}
511 \begin{minipage}{4.0cm}
513 \includegraphics[width=3.3cm]{sic_prec_seq_03.eps}
517 \begin{pspicture}(0,0)(0,0)
518 \psline[linewidth=2pt]{->}(8.3,2)(8.8,2)
519 \psellipse[linecolor=blue](11.1,6.0)(0.3,0.5)
520 \rput{-20}{\psellipse[linecolor=blue](3.1,8.2)(0.3,0.5)}
521 \psline[linewidth=2pt]{->}(3.9,2)(4.4,2)
522 \rput(11.8,0.3){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=hb]{
523 $4a_{\text{Si}}=5a_{\text{SiC}}$
525 \rput(11.5,8){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=hb]{
526 \hkl(h k l) planes match
528 \rput(8.5,6.2){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=hb]{
531 % controversial view!
532 \rput(6.5,5.0){\psframebox[fillstyle=solid,opacity=0.5,fillcolor=black]{
533 \begin{minipage}{14cm}
538 \rput(6.5,5.3){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=white,linewidth=0.1cm]{
539 \begin{minipage}{10cm}
543 {\color{gray}\bf Controversial findings}
546 \item High-temperature implantation {\tiny\color{gray}/Nejim~et~al./}
548 \item {\color{blue}Substitutionally} incorporated C on regular Si lattice sites
549 \item \si{} reacting with further C in cleared volume
551 \item Annealing behavior {\tiny\color{gray}/Serre~et~al./}
553 \item Room temperature implantation $\rightarrow$ high C diffusion
554 \item Elevated temperature implantation $\rightarrow$ no C redistribution
556 $\Rightarrow$ mobile {\color{red}\ci} opposed to
557 stable {\color{blue}\cs{}} configurations
558 \item Strained Si$_{1-y}$C$_y$/Si heterostructures
559 {\tiny\color{gray}/Strane~et~al./Guedj~et~al./}
561 \item Initial {\color{blue}coherent} SiC structures (tensile strain)
562 \item Incoherent SiC nanocrystals (strain relaxation)
567 {\Huge${\lightning}$} \hspace{0.3cm}
568 {\color{blue}\cs{}} --- vs --- {\color{red}\ci} \hspace{0.3cm}
569 {\Huge${\lightning}$}
589 \item Introduction / Motivation
590 \item Assumed SiC precipitation mechanisms / Controversy
592 \item Utilized simulation techniques
594 \item Molecular dynamics (MD) simulations
595 \item Density functional theory (DFT) calculations
597 \item Simulation results
599 \item C and Si self-interstitial point defects in silicon
600 \item Silicon carbide precipitation simulations
602 \item Summary / Conclusion
611 Utilized computational methods
618 {\bf Molecular dynamics (MD)}\\[0.1cm]
620 \begin{tabular}{| p{4.5cm} | p{7.5cm} |}
622 System of $N$ particles &
623 $N=5832\pm 1$ (Defects), $N=238328+6000$ (Precipitation)\\
624 Phase space propagation &
625 Velocity Verlet | timestep: \unit[1]{fs} \\
626 Analytical interaction potential &
627 Tersoff-like {\color{red}short-range}, {\color{blue}bond order} potential
630 E = \frac{1}{2} \sum_{i \neq j} \pot_{ij}, \quad
631 \pot_{ij} = {\color{red}f_C(r_{ij})}
632 \left[ f_R(r_{ij}) + {\color{blue}b_{ij}} f_A(r_{ij}) \right]
634 Observables: time/ensemble averages &
635 NpT (isothermal-isobaric) | Berendsen thermostat/barostat\\
643 {\bf Density functional theory (DFT)}
647 \begin{minipage}[t]{6cm}
649 \item Hohenberg-Kohn theorem:\\
650 $\Psi_0(r_1,r_2,\ldots,r_N)=\Psi[n_0(r)]$, $E_0=E[n_0]$
651 \item Kohn-Sham approach:\\
652 Single-particle effective theory
656 \item Code: \textsc{vasp}
657 \item Plane wave basis set | $E_{\text{cut}}=\unit[300]{eV}$
659 %\Phi_i=\sum_{|G+k|<G_{\text{cut}}} c_{i,k+G} \exp{\left(i(k+G)r\right)}
662 %E_{\text{cut}}=\frac{\hbar^2}{2m}G^2_{\text{cut}}=\unit[300]{eV}
664 \item Ultrasoft pseudopotential
665 \item Exchange \& correlation: GGA
666 \item Brillouin zone sampling: $\Gamma$-point
667 \item Supercell: $N=216\pm2$
670 \begin{minipage}{6cm}
671 \begin{pspicture}(0,0)(0,0)
672 \pscircle[fillcolor=yellow,fillstyle=solid,linestyle=none](3.5,-2.0){2.5}
673 \rput(2.7,-0.7){\psframebox[fillstyle=solid,opacity=0.8,fillcolor=white]{
675 \left[ -\frac{\hbar^2}{2m}\nabla^2 + V_{\text{eff}}(r) - \epsilon_i \right] \Phi_i(r) = 0
678 \rput(5.2,-2.0){\psframebox[fillstyle=solid,opacity=0.8,fillcolor=white]{
680 n(r)=\sum_i^N|\Phi_i(r)|^2
683 \rput(3.0,-4.5){\psframebox[fillstyle=solid,opacity=0.8,fillcolor=white]{
685 V_{\text{eff}}(r)=V_{\text{ext}}(r)+\int\frac{e^2 n(r')}{|r-r'|}d^3r'
689 \psarcn[linewidth=0.07cm,linestyle=dashed]{->}(3.5,-2.0){2.5}{130}{15}
690 \psarcn[linewidth=0.07cm,linestyle=dashed]{->}(3.5,-2.0){2.5}{230}{165}
691 \psarcn[linewidth=0.07cm,linestyle=dashed]{->}(3.5,-2.0){2.5}{345}{310}
702 Point defects \& defect migration
709 \begin{minipage}[b]{7.5cm}
710 {\bf Defect structure}\\
711 \begin{pspicture}(0,0)(7,4.4)
712 \rput(3.5,3.2){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=hb]{
715 \item Creation of c-Si simulation volume
716 \item Periodic boundary conditions
717 \item $T=0\text{ K}$, $p=0\text{ bar}$
720 \rput(3.5,1.3){\rnode{insert}{\psframebox{
723 Insertion of interstitial C/Si atoms
726 \rput(3.5,0.2){\rnode{cool}{\psframebox[fillstyle=solid,fillcolor=lbb]{
729 Relaxation / structural energy minimization
732 \ncline[]{->}{init}{insert}
733 \ncline[]{->}{insert}{cool}
736 \begin{minipage}[b]{4.5cm}
738 \includegraphics[width=3.8cm]{unit_cell_e.eps}\\
740 \begin{minipage}{2.21cm}
742 {\color{red}$\bullet$} Tetrahedral\\[-0.1cm]
743 {\color{green}$\bullet$} Hexagonal\\[-0.1cm]
744 {\color{yellow}$\bullet$} \hkl<1 0 0> DB
747 \begin{minipage}{2.21cm}
749 {\color{magenta}$\bullet$} \hkl<1 1 0> DB\\[-0.1cm]
750 {\color{cyan}$\bullet$} Bond-centered\\[-0.1cm]
751 {\color{black}$\bullet$} Vac. / Sub.
758 \begin{minipage}[t]{6cm}
759 {\bf Defect formation energy}\\
761 $E_{\text{f}}=E-\sum_i N_i\mu_i$}\\[0.5cm]
762 %Particle reservoir: Si \& SiC\\[0.2cm]
763 {\bf Binding energy}\\
767 E_{\text{f}}^{\text{comb}}-
768 E_{\text{f}}^{1^{\text{st}}}-
769 E_{\text{f}}^{2^{\text{nd}}}
773 $E_{\text{b}}<0$: energetically favorable configuration\\
774 $E_{\text{b}}\rightarrow 0$: non-interacting, isolated defects\\
776 \begin{minipage}[t]{6cm}
778 {\bf Migration barrier}
781 \item Displace diffusing atom
782 \item Constrain relaxation of (diffusing) atoms
783 \item Record configurational energy
785 \begin{picture}(0,0)(-60,-33)
786 \includegraphics[width=4.5cm]{crt_mod.eps}
798 C interstitial point defects in silicon\\
801 \begin{tabular}{l c c c c c c r}
803 $E_{\text{f}}$ [eV] & T & H & \hkl<1 0 0> DB & \hkl<1 1 0> DB & S & B &
804 {\color{black} \cs{} \& \si}\\
806 \textsc{vasp} & unstable & unstable & \underline{3.72} & 4.16 & 1.95 & 4.66 & {\color{green}4.17}\\
807 Erhart/Albe & 6.09 & 9.05$^*$ & \underline{3.88} & 5.18 & {\color{red}0.75} & 5.59$^*$ & {\color{green}4.43} \\
809 \end{tabular}\\[0.1cm]
812 \begin{minipage}{2.8cm}
813 \underline{Hexagonal} \hspace{2pt}
814 \href{../video/c_in_si_int_hexa.avi}{$\rhd$}\\
815 $E_{\text{f}}^*=9.05\text{ eV}$\\
816 \includegraphics[width=2.8cm]{c_pd_albe/hex_bonds.eps}
818 \begin{minipage}{0.4cm}
823 \begin{minipage}{2.8cm}
824 \underline{\hkl<1 0 0>}\\
825 $E_{\text{f}}=3.88\text{ eV}$\\
826 \includegraphics[width=2.8cm]{c_pd_albe/100_bonds.eps}
829 \begin{minipage}{1.4cm}
832 \begin{minipage}{3.0cm}
834 \underline{Tetrahedral}\\
835 \includegraphics[width=3.0cm]{c_pd_albe/tet_bonds.eps}
840 \begin{minipage}{2.8cm}
841 \underline{Bond-centered}\\
842 $E_{\text{f}}^*=5.59\text{ eV}$\\
843 \includegraphics[width=2.8cm]{c_pd_albe/bc_bonds.eps}
845 \begin{minipage}{0.4cm}
850 \begin{minipage}{2.8cm}
851 \underline{\hkl<1 1 0> dumbbell}\\
852 $E_{\text{f}}=5.18\text{ eV}$\\
853 \includegraphics[width=2.8cm]{c_pd_albe/110_bonds.eps}
856 \begin{minipage}{1.4cm}
859 \begin{minipage}{3.0cm}
861 \underline{Substitutional}\\
862 \includegraphics[width=3.0cm]{c_pd_albe/sub_bonds.eps}
872 C interstitial migration --- ab initio
879 \begin{minipage}{6.8cm}
880 \framebox{\hkl[0 0 -1] $\rightarrow$ \hkl[0 0 1]}\\
881 \begin{minipage}{2.0cm}
882 \includegraphics[width=2.0cm]{c_pd_vasp/100_2333.eps}
884 \begin{minipage}{0.2cm}
887 \begin{minipage}{2.0cm}
888 \includegraphics[width=2.0cm]{c_pd_vasp/bc_2333.eps}
890 \begin{minipage}{0.2cm}
893 \begin{minipage}{2.0cm}
894 \includegraphics[width=2.0cm]{c_pd_vasp/100_next_2333.eps}
895 \end{minipage}\\[0.1cm]
897 $\Rightarrow$ Sufficient to consider \hkl[00-1] to BC transition\\
898 $\Rightarrow$ Migration barrier to reach BC | $\Delta E=\unit[1.2]{eV}$
900 \begin{minipage}{5.4cm}
901 \includegraphics[width=6.0cm]{im_00-1_nosym_sp_fullct_thesis_vasp_s.ps}
902 %\end{minipage}\\[0.2cm]
903 \end{minipage}\\[0.4cm]
906 \begin{minipage}{6.8cm}
907 \framebox{\hkl[0 0 -1] $\rightarrow$ \hkl[0 -1 0]}\\
908 \begin{minipage}{2.0cm}
909 \includegraphics[width=2.0cm]{c_pd_vasp/100_2333.eps}
911 \begin{minipage}{0.2cm}
914 \begin{minipage}{2.0cm}
915 \includegraphics[width=2.0cm]{c_pd_vasp/00-1-0-10_2333.eps}
917 \begin{minipage}{0.2cm}
920 \begin{minipage}{2.0cm}
921 \includegraphics[width=2.0cm]{c_pd_vasp/0-10_2333.eps}
922 \end{minipage}\\[0.1cm]
923 $\Delta E=\unit[0.9]{eV}$ | Experimental values: \unit[0.70--0.87]{eV}\\
924 $\Rightarrow$ {\color{red}Migration mechanism identified!}\\
925 Note: Change in orientation
927 \begin{minipage}{5.4cm}
928 \includegraphics[width=6.0cm]{00-1_0-10_vasp_s.ps}
929 \end{minipage}\\[0.1cm]
932 %Reorientation pathway composed of two consecutive processes of the above type
941 C interstitial migration --- analytical potential
948 \begin{minipage}[t]{6.0cm}
949 {\bf\boldmath BC to \hkl[0 0 -1] transition}\\[0.2cm]
950 \includegraphics[width=6.0cm]{bc_00-1_albe_s.ps}\\
952 \item Lowermost migration barrier
953 \item $\Delta E \approx \unit[2.2]{eV}$
954 \item 2.4 times higher than ab initio result
955 \item Different pathway
958 \begin{minipage}[t]{0.2cm}
961 \begin{minipage}[t]{6.0cm}
962 {\bf\boldmath Transition involving a \hkl<1 1 0> configuration}
965 \item Bond-centered configuration unstable\\
966 $\rightarrow$ \ci{} \hkl<1 1 0> dumbbell
967 \item Minimum of the \hkl[0 0 -1] to \hkl[0 -1 0] transition\\
968 $\rightarrow$ \ci{} \hkl<1 1 0> DB
971 \includegraphics[width=6.0cm]{00-1_110_0-10_mig_albe.ps}
973 \item $\Delta E \approx \unit[2.2]{eV} \text{ \& } \unit[0.9]{eV}$
974 \item 2.4 -- 3.4 times higher than ab initio result
975 \item After all: Change of the DB orientation
981 {\color{red}\bf Drastically overestimated diffusion barrier}
984 \begin{pspicture}(0,0)(0,0)
985 \psline[linewidth=0.05cm,linecolor=gray](6.1,1.0)(6.1,9.3)
994 Defect combinations --- ab inito
1001 \begin{minipage}{9cm}
1003 Summary of combinations}\\[0.1cm]
1005 \begin{tabular}{l c c c c c c}
1007 $E_{\text{b}}$ [eV] & 1 & 2 & 3 & 4 & 5 & R\\
1009 \hkl[0 0 -1] & {\color{red}-0.08} & -1.15 & {\color{red}-0.08} & 0.04 & -1.66 & -0.19\\
1010 \hkl[0 0 1] & 0.34 & 0.004 & -2.05 & 0.26 & -1.53 & -0.19\\
1011 \hkl[0 -1 0] & {\color{orange}-2.39} & -0.17 & {\color{green}-0.10} & {\color{blue}-0.27} & {\color{magenta}-1.88} & {\color{gray}-0.05}\\
1012 \hkl[0 1 0] & {\color{cyan}-2.25} & -1.90 & {\color{cyan}-2.25} & {\color{purple}-0.12} & {\color{violet}-1.38} & {\color{yellow}-0.06}\\
1013 \hkl[-1 0 0] & {\color{orange}-2.39} & -0.36 & {\color{cyan}-2.25} & {\color{purple}-0.12} & {\color{magenta}-1.88} & {\color{gray}-0.05}\\
1014 \hkl[1 0 0] & {\color{cyan}-2.25} & -2.16 & {\color{green}-0.10} & {\color{blue}-0.27} & {\color{violet}-1.38} & {\color{yellow}-0.06}\\
1016 C$_{\text{sub}}$ & 0.26 & -0.51 & -0.93 & -0.15 & 0.49 & -0.05\\
1017 Vacancy & -5.39 ($\rightarrow$ C$_{\text{sub}}$) & -0.59 & -3.14 & -0.54 & -0.50 & -0.31\\
1024 $E_{\text{b}}$ explainable by stress compensation / increase
1028 \begin{minipage}{3cm}
1029 \includegraphics[width=3.5cm]{comb_pos.eps}
1034 {\bf\boldmath Combinations of \hkl<1 0 0>-type interstitials}\\[0.2cm]
1035 \begin{minipage}[t]{3.2cm}
1036 \underline{\hkl[1 0 0] at position 1}\\[0.1cm]
1039 \includegraphics[width=2.8cm]{00-1dc/2-25.eps}
1042 \begin{minipage}[t]{3.0cm}
1043 \underline{\hkl[0 -1 0] at position 1}\\[0.1cm]
1046 \includegraphics[width=2.5cm]{00-1dc/2-39.eps}
1049 \begin{minipage}[t]{6.1cm}
1052 \item \ci{} agglomeration energetically favorable
1053 \item Most favorable: strong C-C bond\\
1054 {\color{red}However \ldots}\\
1055 \ldots high migration barrier ($>4\,\text{eV}$)\\
1057 $4\times{\color{cyan}[-2.25]}$ versus
1058 $2\times{\color{orange}[-2.39]}$
1061 {\color{blue}\ci{} agglomeration / no C clustering}
1071 Defect combinations --- ab inito
1078 \begin{minipage}{9cm}
1080 Summary of combinations}\\[0.1cm]
1082 \begin{tabular}{l c c c c c c}
1084 $E_{\text{b}}$ [eV] & 1 & 2 & 3 & 4 & 5 & R\\
1086 \hkl[0 0 -1] & {\color{red}-0.08} & -1.15 & {\color{red}-0.08} & 0.04 & -1.66 & -0.19\\
1087 \hkl[0 0 1] & 0.34 & 0.004 & -2.05 & 0.26 & -1.53 & -0.19\\
1088 \hkl[0 -1 0] & {\color{orange}-2.39} & -0.17 & {\color{green}-0.10} & {\color{blue}-0.27} & {\color{magenta}-1.88} & {\color{gray}-0.05}\\
1089 \hkl[0 1 0] & {\color{cyan}-2.25} & -1.90 & {\color{cyan}-2.25} & {\color{purple}-0.12} & {\color{violet}-1.38} & {\color{yellow}-0.06}\\
1090 \hkl[-1 0 0] & {\color{orange}-2.39} & -0.36 & {\color{cyan}-2.25} & {\color{purple}-0.12} & {\color{magenta}-1.88} & {\color{gray}-0.05}\\
1091 \hkl[1 0 0] & {\color{cyan}-2.25} & -2.16 & {\color{green}-0.10} & {\color{blue}-0.27} & {\color{violet}-1.38} & {\color{yellow}-0.06}\\
1093 C$_{\text{sub}}$ & 0.26 & -0.51 & -0.93 & -0.15 & 0.49 & -0.05\\
1094 Vacancy & -5.39 ($\rightarrow$ C$_{\text{sub}}$) & -0.59 & -3.14 & -0.54 & -0.50 & -0.31\\
1101 $E_{\text{b}}$ explainable by stress compensation / increase
1105 \begin{minipage}{3cm}
1106 \includegraphics[width=3.5cm]{comb_pos.eps}
1111 {\bf\boldmath Combinations of \hkl<1 0 0>-type interstitials}\\[0.2cm]
1112 \begin{minipage}[t]{3.2cm}
1113 \underline{\hkl[1 0 0] at position 1}\\[0.1cm]
1116 \includegraphics[width=2.8cm]{00-1dc/2-25.eps}
1119 \begin{minipage}[t]{3.0cm}
1120 \underline{\hkl[0 -1 0] at position 1}\\[0.1cm]
1123 \includegraphics[width=2.5cm]{00-1dc/2-39.eps}
1126 \begin{minipage}[t]{6.1cm}
1129 \item \ci{} agglomeration energetically favorable
1130 \item Most favorable: C clustering\\
1131 {\color{red}However \ldots}\\
1132 \ldots high migration barrier ($>4\,\text{eV}$)\\
1134 $4\times{\color{cyan}[-2.25]}$ versus
1135 $2\times{\color{orange}[-2.39]}$
1138 {\color{blue}\ci{} agglomeration / no C clustering}
1143 \begin{pspicture}(0,0)(0,0)
1144 \rput(6.5,5.0){\psframebox[fillstyle=solid,opacity=0.5,fillcolor=black]{
1145 \begin{minipage}{14cm}
1150 \rput(6.5,5.3){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=white,linewidth=0.1cm]{
1151 \begin{minipage}{8cm}
1155 Interaction along \hkl[1 1 0]
1156 \includegraphics[width=7cm]{db_along_110_cc.ps}
1168 Defect combinations of C-Si dimers and vacancies
1174 \begin{minipage}[b]{2.6cm}
1176 \underline{V at 2: $E_{\text{b}}=-0.59\text{ eV}$}\\[0.1cm]
1177 \includegraphics[width=2.5cm]{00-1dc/0-59.eps}
1180 \begin{minipage}[b]{7cm}
1183 \begin{minipage}[b]{2.6cm}
1185 \underline{V at 3, $E_{\text{b}}=-3.14\text{ eV}$}\\[0.1cm]
1186 \includegraphics[width=2.5cm]{00-1dc/3-14.eps}
1188 \end{minipage}\\[0.2cm]
1190 \begin{minipage}{6.5cm}
1191 \includegraphics[width=6.0cm]{059-539.ps}
1193 \begin{minipage}{5.7cm}
1194 \includegraphics[width=6.0cm]{314-539.ps}
1197 \begin{pspicture}(0,0)(0,0)
1198 \psline[linewidth=0.05cm,linecolor=gray](6.3,9.0)(6.3,0)
1200 \rput(6.3,7.0){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=white,linewidth=0.05cm,linecolor=gray]{
1201 \begin{minipage}{6.5cm}
1203 IBS: Impinging C creates V \& far away \si\\[0.3cm]
1204 Low migration barrier towards C$_{\text{sub}}$\\
1206 High barrier for reverse process\\[0.3cm]
1208 High probability of stable C$_{\text{sub}}$ configuration
1221 Combinations of substitutional C and Si self-interstitials
1228 \begin{minipage}{6.2cm}
1230 {\bf\boldmath C$_{\text{sub}}$ - \si{} \hkl<1 1 0> interaction}
1232 \item Most favorable: \cs{} along \hkl<1 1 0> chain of \si{}
1233 \item Less favorable than ground-state \ci{} \hkl<1 0 0> DB
1234 \item Interaction drops quickly to zero\\
1235 $\rightarrow$ low capture radius
1239 \begin{minipage}{0.2cm}
1242 \begin{minipage}{6.0cm}
1244 {\bf Transition from the ground state}
1246 \item Low transition barrier
1247 \item Barrier smaller than \ci{} migration barrier
1248 \item Low \si{} migration barrier (\unit[0.67]{eV})\\
1249 $\rightarrow$ Separation of \cs{} \& \si{} most probable
1252 \end{minipage}\\[0.3cm]
1254 \begin{minipage}{6.0cm}
1255 \includegraphics[width=6.0cm]{c_sub_si110.ps}
1257 \begin{minipage}{0.4cm}
1260 \begin{minipage}{6.0cm}
1262 \includegraphics[width=6.0cm]{162-097.ps}
1266 \begin{pspicture}(0,0)(0,0)
1267 \psline[linewidth=0.05cm,linecolor=gray](6.5,0)(6.5,7.5)
1268 \rput(6.5,-0.7){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=white,linewidth=0.05cm,linecolor=blue]{
1269 \begin{minipage}{8cm}
1273 \cs{} \& \si{} instead of thermodynamic ground state\\[0.1cm]
1274 IBS --- process far from equilibrium\\
1287 Combinations of substitutional C and Si self-interstitials
1294 \begin{minipage}{6.2cm}
1296 {\bf\boldmath C$_{\text{sub}}$ - \si{} \hkl<1 1 0> interaction}
1298 \item Most favorable: \cs{} along \hkl<1 1 0> chain of \si{}
1299 \item Less favorable than ground-state \ci{} \hkl<1 0 0> DB
1300 \item Interaction drops quickly to zero\\
1301 $\rightarrow$ low capture radius
1305 \begin{minipage}{0.2cm}
1308 \begin{minipage}{6.0cm}
1310 {\bf Transition from the ground state}
1312 \item Low transition barrier
1313 \item Barrier smaller than \ci{} migration barrier
1314 \item Low \si{} migration barrier (\unit[0.67]{eV})\\
1315 $\rightarrow$ Separation of \cs{} \& \si{} most probable
1318 \end{minipage}\\[0.3cm]
1320 \begin{minipage}{6.0cm}
1321 \includegraphics[width=6.0cm]{c_sub_si110.ps}
1323 \begin{minipage}{0.4cm}
1326 \begin{minipage}{6.0cm}
1328 \includegraphics[width=6.0cm]{162-097.ps}
1332 \begin{pspicture}(0,0)(0,0)
1333 \psline[linewidth=0.05cm,linecolor=gray](6.5,0)(6.5,7.5)
1334 \rput(6.5,-0.7){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=white,linewidth=0.05cm,linecolor=blue]{
1335 \begin{minipage}{8cm}
1339 \cs{} \& \si{} instead of thermodynamic ground state\\[0.1cm]
1340 IBS --- process far from equilibrium\\
1348 \begin{pspicture}(0,0)(0,0)
1349 \rput(6.5,5.0){\psframebox[fillstyle=solid,opacity=0.5,fillcolor=black]{
1350 \begin{minipage}{14cm}
1355 \rput(6.5,4.3){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=white,linewidth=0.1cm]{
1356 \begin{minipage}{11cm}
1360 Ab initio MD at \degc{900}\\[0.4cm]
1361 \begin{minipage}{5.4cm}
1363 \includegraphics[width=4.3cm]{md01_bonds.eps}\\
1366 \begin{minipage}{5.4cm}
1368 \includegraphics[width=4.3cm]{md02_bonds.eps}\\
1370 \end{minipage}\\[0.5cm]
1372 Contribution of entropy to structural formation\\[0.1cm]
1385 Silicon carbide precipitation simulations
1395 \begin{pspicture}(0,0)(12,6.5)
1397 \rput(3.5,5.2){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=hb]{
1400 \item Create c-Si volume
1401 \item Periodc boundary conditions
1402 \item Set requested $T$ and $p=0\text{ bar}$
1403 \item Equilibration of $E_{\text{kin}}$ and $E_{\text{pot}}$
1406 \rput(3.5,2.7){\rnode{insert}{\psframebox[fillstyle=solid,fillcolor=lachs]{
1408 Insertion of C atoms at constant T
1410 \item total simulation volume {\pnode{in1}}
1411 \item volume of minimal SiC precipitate size {\pnode{in2}}
1412 %\item volume consisting of Si atoms to form a minimal {\pnode{in3}}\\
1413 \item volume containing Si atoms to form a minimal {\pnode{in3}}\\
1417 \rput(3.5,1){\rnode{cool}{\psframebox[fillstyle=solid,fillcolor=lbb]{
1419 Run for 100 ps followed by cooling down to $20\, ^{\circ}\textrm{C}$
1421 \ncline[]{->}{init}{insert}
1422 \ncline[]{->}{insert}{cool}
1423 \psframe[fillstyle=solid,fillcolor=white](7.3,0.7)(12.8,6.3)
1424 \rput(7.6,6){\footnotesize $V_1$}
1425 \psframe[fillstyle=solid,fillcolor=lightgray](8.7,2)(11.6,5)
1426 \rput(8.9,4.85){\tiny $V_2$}
1427 \psframe[fillstyle=solid,fillcolor=gray](8.95,2.25)(11.35,4.75)
1428 \rput(9.25,4.45){\footnotesize $V_3$}
1429 \rput(7.9,3.2){\pnode{ins1}}
1430 \rput(8.92,2.8){\pnode{ins2}}
1431 \rput(10.8,2.4){\pnode{ins3}}
1432 \ncline[]{->}{in1}{ins1}
1433 \ncline[]{->}{in2}{ins2}
1434 \ncline[]{->}{in3}{ins3}
1444 \begin{minipage}{5.7cm}
1446 \item Amount of C atoms: 6000\\
1447 ($r_{\text{prec}}\approx 3.1\text{ nm}$, IBS: \unit[2--4]{nm})
1448 \item Simulation volume: $31^3$ Si unit cells\\
1452 \begin{minipage}{0.3cm}
1456 \begin{minipage}{6.0cm}
1457 Restricted to classical potential caclulations\\
1458 $\rightarrow$ Low C diffusion / overestimated barrier\\
1459 $\rightarrow$ Consider $V_2$ and $V_3$
1461 % \item $V_2$ and $V_3$ considered due to expected low C diffusion
1472 Silicon carbide precipitation simulations at \degc{450} as in IBS
1477 \begin{minipage}{6.3cm}
1478 \hspace*{-0.4cm}\includegraphics[width=6.5cm]{sic_prec_450_si-c.ps}\\
1479 \hspace*{-0.4cm}\includegraphics[width=6.5cm]{sic_prec_450_si-si_c-c.ps}
1482 \begin{minipage}{6.1cm}
1484 \underline{Low C concentration --- {\color{red}$V_1$}}\\[0.1cm]
1485 \ci{} \hkl<1 0 0> dumbbell dominated structure
1487 \item Si-C bumbs around \unit[0.19]{nm}
1488 \item C-C peak at \unit[0.31]{nm} (expected in 3C-SiC):\\
1489 concatenated differently oriented \ci{} DBs
1490 \item Si-Si NN distance stretched to \unit[0.3]{nm}
1492 \begin{pspicture}(0,0)(6.0,1.0)
1493 \rput(3.2,0.5){\psframebox[linewidth=0.03cm,linecolor=blue]{
1494 \begin{minipage}{6cm}
1496 Formation of \ci{} dumbbells\\
1497 C atoms separated as expected in 3C-SiC
1500 \end{pspicture}\\[0.1cm]
1501 \underline{High C concentration --- {\color{green}$V_2$}/{\color{blue}$V_3$}}
1503 \item High amount of strongly bound C-C bonds
1504 \item Increased defect \& damage density\\
1505 $\rightarrow$ Arrangements hard to categorize and trace
1506 \item Only short range order observable
1508 \begin{pspicture}(0,0)(6.0,0.8)
1509 \rput(3.2,0.5){\psframebox[linewidth=0.03cm,linecolor=blue]{
1510 \begin{minipage}{6cm}
1512 Amorphous SiC-like phase
1515 \end{pspicture}\\[0.3cm]
1516 \begin{pspicture}(0,0)(6.0,2.0)
1517 \rput(3.2,1.0){\psframebox[linewidth=0.05cm,linecolor=white]{
1518 \begin{minipage}{6cm}
1532 Silicon carbide precipitation simulations at \degc{450} as in IBS
1537 \begin{minipage}{6.3cm}
1538 \hspace*{-0.4cm}\includegraphics[width=6.5cm]{sic_prec_450_si-c.ps}\\
1539 \hspace*{-0.4cm}\includegraphics[width=6.5cm]{sic_prec_450_si-si_c-c.ps}
1542 \begin{minipage}{6.1cm}
1544 \underline{Low C concentration --- {\color{red}$V_1$}}\\[0.1cm]
1545 \ci{} \hkl<1 0 0> dumbbell dominated structure
1547 \item Si-C bumbs around \unit[0.19]{nm}
1548 \item C-C peak at \unit[0.31]{nm} (expected in 3C-SiC):\\
1549 concatenated differently oriented \ci{} DBs
1550 \item Si-Si NN distance stretched to \unit[0.3]{nm}
1552 \begin{pspicture}(0,0)(6.0,1.0)
1553 \rput(3.2,0.5){\psframebox[linewidth=0.03cm,linecolor=blue]{
1554 \begin{minipage}{6cm}
1556 Formation of \ci{} dumbbells\\
1557 C atoms separated as expected in 3C-SiC
1560 \end{pspicture}\\[0.1cm]
1561 \underline{High C concentration --- {\color{green}$V_2$}/{\color{blue}$V_3$}}
1563 \item High amount of strongly bound C-C bonds
1564 \item Increased defect \& damage density\\
1565 $\rightarrow$ Arrangements hard to categorize and trace
1566 \item Only short range order observable
1568 \begin{pspicture}(0,0)(6.0,0.8)
1569 \rput(3.2,0.5){\psframebox[linewidth=0.03cm,linecolor=blue]{
1570 \begin{minipage}{6cm}
1572 Amorphous SiC-like phase
1575 \end{pspicture}\\[0.3cm]
1576 \begin{pspicture}(0,0)(6.0,2.0)
1577 \rput(3.2,1.0){\psframebox[linewidth=0.05cm,linecolor=black]{
1578 \begin{minipage}{6cm}
1581 {\bf\color{red}Formation of 3C-SiC fails to appear}\\[0.3cm]
1582 \begin{minipage}{0.8cm}
1583 {\bf\boldmath $V_1$:}
1585 \begin{minipage}{5.1cm}
1586 Formation of \ci{} indeed occurs\\
1587 Agllomeration not observed
1588 \end{minipage}\\[0.3cm]
1589 \begin{minipage}{0.8cm}
1590 {\bf\boldmath $V_{2,3}$:}
1592 \begin{minipage}{5.1cm}
1593 Amorphous SiC-like structure\\
1594 (not expected at \degc{450})\\[0.05cm]
1595 No rearrangement/transition into 3C-SiC
1596 \end{minipage}\\[0.1cm]
1608 Limitations of MD and short range potentials
1615 {\bf Time scale problem of MD}\\[0.2cm]
1616 Minimize integration error \& precise thermodynamic sampling\\
1617 $\Rightarrow$ $\Delta t \ll \left( \max{\omega} \right)^{-1}$,
1618 $\omega$: vibrational mode\\
1619 $\Rightarrow$ {\color{red}\underline{Slow}} phase space propagation\\[0.2cm]
1620 Several local minima separated by large energy barriers\\
1621 $\Rightarrow$ Transition event corresponds to a multiple
1622 of vibrational periods\\
1623 $\Rightarrow$ Phase transition consists of {\color{red}\underline{many}}
1624 infrequent transition events\\[0.2cm]
1625 {\color{blue}Accelerated methods:}
1626 \underline{Temperature accelerated} MD (TAD), self-guided MD \ldots
1630 {\bf Limitations related to the short range potential}\\[0.2cm]
1631 Cut-off function limits interaction to next neighbours\\
1632 $\Rightarrow$ Overestimated diffusion barrier (factor: 2.4--3.4)
1636 {\bf Approach to the (twofold) problem}\\[0.2cm]
1637 Increased temperature simulations without TAD corrections\\
1638 Accelerated methods or higher time scales exclusively not sufficient!
1640 \begin{pspicture}(0,0)(0,0)
1641 \rput(4.0,2.8){\psframebox[linewidth=0.07cm,linecolor=red]{
1642 \begin{minipage}{7.5cm}
1645 Potential enhanced slow phase space propagation
1648 \rput(11.3,7.5){\psframebox[linewidth=0.03cm,linecolor=blue]{
1649 \begin{minipage}{2.7cm}
1653 thermodynamic sampling
1656 \psline[linewidth=0.03cm,linecolor=blue]{<-}(11.3,7.0)(11.0,5.7)
1657 \rput(10.85,2.6){\psframebox[linewidth=0.03cm,linecolor=blue]{
1658 \begin{minipage}{3.6cm}
1661 \underline{IBS}\\[0.1cm]
1662 3C-SiC also observed for higher T\\[0.1cm]
1663 Higher T inside sample\\[0.1cm]
1664 Structural evolution vs.\\
1665 equilibrium properties
1668 \psline[linewidth=0.03cm,linecolor=blue]{->}(10.85,1.75)(9.0,1.0)
1677 Increased temperature simulations --- $V_1$
1682 \begin{minipage}{6.2cm}
1683 \hspace*{-0.4cm}\includegraphics[width=6.5cm]{tot_pc_thesis.ps}
1686 \begin{minipage}{6.2cm}
1687 \includegraphics[width=6.5cm]{tot_pc3_thesis.ps}
1690 \begin{minipage}{6.2cm}
1691 \hspace*{-0.4cm}\includegraphics[width=6.5cm]{tot_pc2_thesis.ps}
1694 \begin{minipage}{6.3cm}
1696 \underline{Si-C bonds:}
1698 \item Vanishing cut-off artifact (above $1650\,^{\circ}\mathrm{C}$)
1699 \item Structural change: \ci{} \hkl<1 0 0> DB $\rightarrow$
1702 \underline{Si-Si bonds:}
1703 {\color{blue}Si-C$_{\text{sub}}$-Si} along \hkl<1 1 0>
1704 ($\rightarrow$ 0.325 nm)\\[0.1cm]
1705 \underline{C-C bonds:}
1707 \item C-C next neighbour pairs reduced (mandatory)
1708 \item Peak at 0.3 nm slightly shifted\\[0.05cm]
1709 $\searrow$ \ci{} combinations (dashed arrows)\\
1710 $\nearrow$ \ci{} \hkl<1 0 0> \& {\color{blue}\cs{} combinations} (|)\\
1711 $\nearrow$ \ci{} pure \cs{} combinations ($\downarrow$)\\[0.05cm]
1712 Range [|-$\downarrow$]: {\color{blue}\cs{} \& \cs{} with nearby \si}
1722 Increased temperature simulations --- $V_1$
1727 \begin{minipage}{6.2cm}
1728 \hspace*{-0.4cm}\includegraphics[width=6.5cm]{tot_pc_thesis.ps}
1731 \begin{minipage}{6.2cm}
1732 \includegraphics[width=6.5cm]{tot_pc3_thesis.ps}
1735 \begin{minipage}{6.2cm}
1736 \hspace*{-0.4cm}\includegraphics[width=6.5cm]{tot_pc2_thesis.ps}
1739 \begin{minipage}{6.3cm}
1741 \underline{Si-C bonds:}
1743 \item Vanishing cut-off artifact (above $1650\,^{\circ}\mathrm{C}$)
1744 \item Structural change: \ci{} \hkl<1 0 0> DB $\rightarrow$
1747 \underline{Si-Si bonds:}
1748 {\color{blue}Si-C$_{\text{sub}}$-Si} along \hkl<1 1 0>
1749 ($\rightarrow$ 0.325 nm)\\[0.1cm]
1750 \underline{C-C bonds:}
1752 \item C-C next neighbour pairs reduced (mandatory)
1753 \item Peak at 0.3 nm slightly shifted\\[0.05cm]
1754 $\searrow$ \ci{} combinations (dashed arrows)\\
1755 $\nearrow$ \ci{} \hkl<1 0 0> \& {\color{blue}\cs{} combinations} (|)\\
1756 $\nearrow$ \ci{} pure \cs{} combinations ($\downarrow$)\\[0.05cm]
1757 Range [|-$\downarrow$]: {\color{blue}\cs{} \& \cs{} with nearby \si}
1762 \begin{pspicture}(0,0)(0,0)
1763 \rput(6.5,5.0){\psframebox[fillstyle=solid,opacity=0.5,fillcolor=black]{
1764 \begin{minipage}{14cm}
1769 \rput(6.5,5.0){\psframebox[fillstyle=solid,fillcolor=white,linewidth=0.1cm]{
1770 \begin{minipage}{9cm}
1774 {\color{gray}\bf Conclusions on SiC precipitation}\\[0.1cm]
1775 {\Huge$\lightning$} {\color{red}\ci{}} --- vs --- {\color{blue}\cs{}} {\Huge$\lightning$}\\
1778 \item Stretched coherent SiC structures directly observed\\
1779 \psframebox[linecolor=blue,linewidth=0.05cm]{
1780 \begin{minipage}{7cm}
1782 \cs{} involved in the precipitation mechanism\\
1785 \item Emission of \si{} serves several needs:
1787 \item Vehicle to rearrange \cs --- [\cs{} \& \si{} $\leftrightarrow$ \ci]
1788 \item Building block for surrounding Si host \& further SiC
1789 \item Strain compensation \ldots\\
1790 \ldots Si/SiC interface\\
1791 \ldots within stretched coherent SiC structure
1793 \item Explains annealing behavior of high/low T C implantations
1795 \item Low T: highly mobile {\color{red}\ci}
1796 \item High T: stable configurations of {\color{blue}\cs}
1798 \psframebox[linecolor=blue,linewidth=0.05cm]{
1799 \begin{minipage}{7cm}
1801 High T $\leftrightarrow$ IBS conditions far from equilibrium\\
1816 Summary and Conclusions
1824 \begin{minipage}{12.3cm}
1829 \item Point defects excellently / fairly well described
1831 \item Identified \ci{} migration path
1832 \item EA drastically overestimates the diffusion barrier
1834 \item Combinations of defects (DFT)
1836 \item Agglomeration of point defects energetically favorable
1837 \item C$_{\text{sub}}$ favored conditions (conceivable in IBS)
1838 \item \ci{} \hkl<1 0 0> $\leftrightarrow$ \cs{} \& \si{} \hkl<1 1 0>\\
1839 Low barrier (\unit[0.77]{eV}) \& low capture radius
1846 \begin{minipage}[t]{12.3cm}
1847 \underline{Pecipitation simulations}
1849 \item Problem of potential enhanced slow phase space propagation
1850 \item High T necessary to simulate IBS conditions (far from equilibrium)
1851 \item Low T $\rightarrow$ C-Si \hkl<1 0 0> dumbbell dominated structure
1852 \item High T $\rightarrow$ C$_{\text{sub}}$ dominated structure
1853 / Structures of stretched SiC\\
1855 \cs{} involved in the precipitation process at elevated temperatures
1856 \item \si{}: vehicle to form \cs{} \& supply of Si \& stress compensation
1857 (stretched SiC, interface)
1864 \framebox{IBS: 3C-SiC precipitation occurs by successive agglomeration of \cs{}}
1883 \begin{minipage}[t]{6cm}
1884 \underline{Augsburg}
1886 \item Prof. B. Stritzker
1891 \underline{Helsinki}
1893 \item Prof. K. Nordlund
1898 \item Bayerische Forschungsstiftung
1901 \underline{Paderborn}
1903 \item Prof. J. Lindner
1904 \item Prof. G. Schmidt
1908 \begin{minipage}[t]{6cm}
1909 \underline{Referees}
1912 \item Prof. F. Haider
1919 \Large\bf Thank you for your attention!
1935 Polytypes of SiC\\[0.6cm]
1940 \includegraphics[width=3.8cm]{cubic_hex.eps}\\
1941 \begin{minipage}{1.9cm}
1942 {\tiny cubic (twist)}
1944 \begin{minipage}{2.9cm}
1945 {\tiny hexagonal (no twist)}
1948 \begin{picture}(0,0)(-150,0)
1949 \includegraphics[width=7cm]{polytypes.eps}
1956 \begin{tabular}{l c c c c c c}
1958 & 3C-SiC & 4H-SiC & 6H-SiC & Si & GaN & Diamond\\
1960 Hardness [Mohs] & \multicolumn{3}{c}{------ 9.6 ------}& 6.5 & - & 10 \\
1961 Band gap [eV] & 2.36 & 3.23 & 3.03 & 1.12 & 3.39 & 5.5 \\
1962 Break down field [$10^6$ V/cm] & 4 & 3 & 3.2 & 0.6 & 5 & 10 \\
1963 Saturation drift velocity [$10^7$ cm/s] & 2.5 & 2.0 & 2.0 & 1 & 2.7 & 2.7 \\
1964 Electron mobility [cm$^2$/Vs] & 800 & 900 & 400 & 1100 & 900 & 2200 \\
1965 Hole mobility [cm$^2$/Vs] & 320 & 120 & 90 & 420 & 150 & 1600 \\
1966 Thermal conductivity [W/cmK] & 5.0 & 4.9 & 4.9 & 1.5 & 1.3 & 22 \\
1970 \begin{pspicture}(0,0)(0,0)
1971 \psellipse[linecolor=green](5.7,2.05)(0.4,0.50)
1973 \begin{pspicture}(0,0)(0,0)
1974 \psellipse[linecolor=green](5.6,0.89)(0.4,0.20)
1976 \begin{pspicture}(0,0)(0,0)
1977 \psellipse[linecolor=red](10.45,0.42)(0.4,0.20)
1988 Si self-interstitial point defects in silicon\\[0.1cm]
1992 \begin{tabular}{l c c c c c}
1994 $E_{\text{f}}$ [eV] & \hkl<1 1 0> DB & H & T & \hkl<1 0 0> DB & V \\
1996 \textsc{vasp} & \underline{3.39} & 3.42 & 3.77 & 4.41 & 3.63 \\
1997 Erhart/Albe & 4.39 & 4.48$^*$ & \underline{3.40} & 5.42 & 3.13 \\
1999 \end{tabular}\\[0.4cm]
2002 \begin{minipage}{3cm}
2004 \underline{Vacancy}\\
2005 \includegraphics[width=2.8cm]{si_pd_albe/vac.eps}
2008 \begin{minipage}{3cm}
2010 \underline{\hkl<1 1 0> DB}\\
2011 \includegraphics[width=2.8cm]{si_pd_albe/110_bonds.eps}
2014 \begin{minipage}{3cm}
2016 \underline{\hkl<1 0 0> DB}\\
2017 \includegraphics[width=2.8cm]{si_pd_albe/100_bonds.eps}
2020 \begin{minipage}{3cm}
2022 \underline{Tetrahedral}\\
2023 \includegraphics[width=2.8cm]{si_pd_albe/tet_bonds.eps}
2027 \underline{Hexagonal} \hspace{2pt}
2028 \href{../video/si_self_int_hexa.avi}{$\rhd$}\\[0.1cm]
2030 \begin{minipage}{2.7cm}
2031 $E_{\text{f}}^*=4.48\text{ eV}$\\
2032 \includegraphics[width=2.7cm]{si_pd_albe/hex_a_bonds.eps}
2034 \begin{minipage}{0.4cm}
2039 \begin{minipage}{2.7cm}
2040 $E_{\text{f}}=3.96\text{ eV}$\\
2041 \includegraphics[width=2.8cm]{si_pd_albe/hex_bonds.eps}
2044 \begin{minipage}{5.5cm}
2046 {\tiny nearly T $\rightarrow$ T}\\
2048 \includegraphics[width=6.0cm]{nhex_tet.ps}
2057 C-Si dimer \& bond-centered interstitial configuration
2064 \begin{minipage}[t]{4.1cm}
2065 {\bf\boldmath C \hkl<1 0 0> DB interstitial}\\[0.1cm]
2066 \begin{minipage}{2.0cm}
2068 \underline{Erhart/Albe}
2069 \includegraphics[width=2.0cm]{c_pd_albe/100_cmp.eps}
2072 \begin{minipage}{2.0cm}
2074 \underline{\textsc{vasp}}
2075 \includegraphics[width=2.0cm]{c_pd_vasp/100_cmp.eps}
2077 \end{minipage}\\[0.2cm]
2078 Si-C-Si bond angle $\rightarrow$ \unit[180]{$^{\circ}$}\\
2079 $\Rightarrow$ $sp$ hybridization\\[0.1cm]
2080 Si-Si-Si bond angle $\rightarrow$ \unit[120]{$^{\circ}$}\\
2081 $\Rightarrow$ $sp^2$ hybridization
2083 \includegraphics[width=3.4cm]{c_pd_vasp/eden.eps}\\[-0.1cm]
2084 {\tiny Charge density isosurface}
2087 \begin{minipage}{0.2cm}
2090 \begin{minipage}[t]{8.1cm}
2092 {\bf Bond-centered interstitial}\\[0.1cm]
2093 \begin{minipage}{4.4cm}
2096 \item Linear Si-C-Si bond
2097 \item Si: one C \& 3 Si neighbours
2098 \item Spin polarized calculations
2099 \item No saddle point!\\
2103 \begin{minipage}{2.7cm}
2104 %\includegraphics[width=2.8cm]{c_pd_vasp/bc_2333.eps}\\
2106 \includegraphics[width=2.8cm]{c_pd_albe/bc_bonds.eps}\\
2111 \begin{minipage}[t]{6.5cm}
2112 \begin{minipage}[t]{1.2cm}
2114 {\tiny sp$^3$}\\[0.8cm]
2115 \underline{${\color{black}\uparrow}$}
2116 \underline{${\color{black}\uparrow}$}
2117 \underline{${\color{black}\uparrow}$}
2118 \underline{${\color{red}\uparrow}$}\\
2121 \begin{minipage}[t]{1.4cm}
2123 {\color{red}M}{\color{blue}O}\\[0.8cm]
2124 \underline{${\color{blue}\uparrow}{\color{white}\downarrow}$}\\
2125 $\sigma_{\text{ab}}$\\[0.5cm]
2126 \underline{${\color{red}\uparrow}{\color{blue}\downarrow}$}\\
2130 \begin{minipage}[t]{1.0cm}
2134 \underline{${\color{white}\uparrow\uparrow}$}
2135 \underline{${\color{white}\uparrow\uparrow}$}\\
2137 \underline{${\color{blue}\uparrow}{\color{blue}\downarrow}$}
2138 \underline{${\color{blue}\uparrow}{\color{blue}\downarrow}$}\\
2142 \begin{minipage}[t]{1.4cm}
2144 {\color{blue}M}{\color{green}O}\\[0.8cm]
2145 \underline{${\color{blue}\uparrow}{\color{white}\downarrow}$}\\
2146 $\sigma_{\text{ab}}$\\[0.5cm]
2147 \underline{${\color{green}\uparrow}{\color{blue}\downarrow}$}\\
2151 \begin{minipage}[t]{1.2cm}
2154 {\tiny sp$^3$}\\[0.8cm]
2155 \underline{${\color{green}\uparrow}$}
2156 \underline{${\color{black}\uparrow}$}
2157 \underline{${\color{black}\uparrow}$}
2158 \underline{${\color{black}\uparrow}$}\\
2166 \begin{minipage}{3.0cm}
2168 \underline{Charge density}\\
2169 {\color{gray}$\bullet$} Spin up\\
2170 {\color{green}$\bullet$} Spin down\\
2171 {\color{blue}$\bullet$} Resulting spin up\\
2172 {\color{yellow}$\bullet$} Si atoms\\
2173 {\color{red}$\bullet$} C atom
2175 \begin{minipage}{3.6cm}
2176 \includegraphics[width=3.8cm]{c_100_mig_vasp/im_spin_diff.eps}
2183 \begin{pspicture}(0,0)(0,0)
2184 \psline[linecolor=gray,linewidth=0.05cm](-7.8,-8.7)(-7.8,0)
2192 Increased temperature simulations at high C concentration
2197 \begin{minipage}{6.0cm}
2198 \includegraphics[width=6.4cm]{12_pc_thesis.ps}
2200 \begin{minipage}{6.0cm}
2201 \includegraphics[width=6.4cm]{12_pc_c_thesis.ps}
2209 \begin{minipage}[t]{5.5cm}
2210 0.186 nm: Si-C pairs $\uparrow$\\
2211 (as expected in 3C-SiC)\\[0.2cm]
2212 0.282 nm: Si-C-C\\[0.2cm]
2213 $\approx$0.35 nm: C-Si-Si
2216 \begin{minipage}{0.1cm}
2220 \begin{minipage}[t]{5.9cm}
2221 0.15 nm: C-C pairs $\uparrow$\\
2222 (as expected in graphite/diamond)\\[0.2cm]
2223 0.252 nm: C-C-C (2$^{\text{nd}}$ NN for diamond)\\[0.2cm]
2224 0.31 nm: shifted towards 0.317 nm $\rightarrow$ C-Si-C
2229 \item Decreasing cut-off artifact
2230 \item {\color{red}Amorphous} SiC-like phase remains
2231 \item High amount of {\color{red}damage} \& alignement to c-Si host matrix lost
2232 \item Slightly sharper peaks $\Rightarrow$ indicate slight {\color{blue}acceleration of dynamics} due to temperature
2239 High C \& small $V$ \& short $t$
2242 \begin{minipage}{4cm}
2244 Slow structural evolution due to strong C-C bonds
2249 High C \& low T implants
2262 Valuation of a practicable temperature limit
2272 Recrystallization is a hard task!
2273 $\Rightarrow$ Avoid melting!
2282 \begin{minipage}{6.4cm}
2283 \includegraphics[width=6.4cm]{fe_and_t.ps}
2285 \begin{minipage}{5.7cm}
2286 \underline{Melting does not occur instantly after}\\
2287 \underline{exceeding the melting point $T_{\text{m}}=2450\text{ K}$}
2289 \item required transition enthalpy
2290 \item hysterisis behaviour
2292 \underline{Heating up c-Si by 1 K/ps}
2294 \item transition occurs at $\approx$ 3125 K
2295 \item $\Delta E=0.58\text{ eV/atom}=55.7\text{ kJ/mole}$\\
2296 (literature: 50.2 kJ/mole)
2303 \begin{minipage}{4cm}
2304 Initially chosen temperatures:\\
2305 $1.0 - 1.2 \cdot T_{\text{m}}$
2308 \begin{minipage}{2cm}
2314 \begin{minipage}{5cm}
2315 Introduced C (defects)\\
2316 $\rightarrow$ reduction of transition point\\
2317 $\rightarrow$ melting already at $T_{\text{m}}$
2326 Maximum temperature used: $0.95\cdot T_{\text{m}}$
2336 Long time scale simulations at maximum temperature
2343 \underline{Differences}
2345 \item Temperature set to $0.95 \cdot T_{\text{m}}$
2346 \item Cubic insertion volume $\Rightarrow$ spherical insertion volume
2347 \item Amount of C atoms: 6000 $\rightarrow$ 5500
2348 $\Leftrightarrow r_{\text{prec}}=0.3\text{ nm}$
2349 \item Simulation volume: 21 unit cells of c-Si in each direction
2356 \begin{minipage}[t]{4.3cm}
2358 \underline{Low C concentration, Si-C}
2359 \includegraphics[width=4.3cm]{c_in_si_95_v1_si-c.ps}\\
2363 \begin{minipage}[t]{4.3cm}
2365 \underline{Low C concentration, C-C}
2366 \includegraphics[width=4.3cm]{c_in_si_95_v1_c-c.ps}\\
2371 \begin{minipage}[t]{3.4cm}
2373 \underline{High C concentration}
2374 \includegraphics[width=4.3cm]{c_in_si_95_v2.ps}\\
2375 No significant changes\\
2376 iC-Si-Si $\uparrow$\\
2383 Long time scales and high temperatures most probably not sufficient enough!
2392 Investigation of a silicon carbide precipitate in silicon
2401 \begin{minipage}{5.3cm}
2403 \frac{8}{a_{\text{Si}}^3}(
2404 \underbrace{21^3 a_{\text{Si}}^3}_{=V}
2405 -\frac{4}{3}\pi x^3)+
2406 \underbrace{\frac{4}{y^3}\frac{4}{3}\pi x^3}_{\stackrel{!}{=}5500}
2413 \frac{8}{a_{\text{Si}}^3}\frac{4}{3}\pi x^3=5500
2414 \Rightarrow x = \left(\frac{5500 \cdot 3}{32 \pi} \right)^{1/3}a_{\text{Si}}
2417 y=\left(\frac{1}{2} \right)^{1/3}a_{\text{Si}}
2421 \begin{minipage}{0.1cm}
2424 \begin{minipage}{6.3cm}
2425 \underline{Construction}
2427 \item Simulation volume: 21$^3$ unit cells of c-Si
2428 \item Spherical topotactically aligned precipitate\\
2429 $r=3.0\text{ nm}$ $\Leftrightarrow$ $\approx$ 5500 C atoms
2430 \item Create c-Si but skipped inside sphere\\
2432 \item Create 3C-SiC inside sphere of radius $x$\\
2433 and lattice constant $y$
2434 \item Strong coupling to heat bath ($T=20\,^{\circ}\mathrm{C}$)
2440 \begin{minipage}{6.0cm}
2441 \includegraphics[width=6cm]{pc_0.ps}
2443 \begin{minipage}{6.1cm}
2446 \item Slight increase of c-Si lattice constant!
2448 (imply same distanced Si-Si peaks)
2450 \item New peak at 0.307 nm: 2$^{\text{nd}}$ NN in 3C-SiC
2451 \item Bumps ({\color{green}$\downarrow$}):
2452 4$^{\text{th}}$ and 6$^{\text{th}}$ NN
2454 \item 3C-SiC lattice constant: 4.34 \AA (bulk: 4.36 \AA)\\
2455 $\rightarrow$ compressed precipitate
2456 \item Interface tension:\\
2457 20.15 eV/nm$^2$ or $3.23 \times 10^{-4}$ J/cm$^2$\\
2458 (literature: $2 - 8 \times 10^{-4}$ J/cm$^2$)
2467 Investigation of a silicon carbide precipitate in silicon
2472 \begin{minipage}{7cm}
2473 \underline{Appended annealing steps}
2475 \item artificially constructed interface\\
2476 $\rightarrow$ allow for rearrangement of interface atoms
2477 \item check SiC stability
2479 \underline{Temperature schedule}
2481 \item rapidly heat up structure up to $2050\,^{\circ}\mathrm{C}$\\
2483 \item slow heating up to $1.2\cdot T_{\text{m}}=2940\text{ K}$
2485 $\rightarrow$ melting at around 2840 K
2486 (\href{../video/sic_prec_120.avi}{$\rhd$})
2487 \item cooling down structure at 100 \% $T_{\text{m}}$ (1 K/ps)\\
2488 $\rightarrow$ no energetically more favorable struture
2491 \begin{minipage}{5cm}
2492 \includegraphics[width=5.5cm]{fe_and_t_sic.ps}
2495 \begin{minipage}{4cm}
2496 \includegraphics[width=4cm]{sic_prec/melt_01.eps}
2498 \begin{minipage}{0.2cm}
2501 \begin{minipage}{4cm}
2502 \includegraphics[width=4cm]{sic_prec/melt_02.eps}
2504 \begin{minipage}{0.2cm}
2507 \begin{minipage}{3.7cm}
2508 \includegraphics[width=4cm]{sic_prec/melt_03.eps}
2523 Equilibrium lattice constants and cohesive energies
2525 \begin{tabular}{l r c c c c c}
2528 & & USPP, LDA & USPP, GGA & PAW, LDA & PAW, GGA & Exp. \\
2530 Si (dia) & $a$ [\AA] & 5.389 & 5.455 & - & - & 5.429 \\
2531 & $\Delta_a$ [\%] & \unit[{\color{green}0.7}]{\%} & \unit[{\color{green}0.5}]{\%} & - & - & - \\
2532 & $E_{\text{coh}}$ [eV] & -5.277 & -4.591 & - & - & -4.63 \\
2533 & $\Delta_E$ [\%] & \unit[{\color{red}14.0}]{\%} & \unit[{\color{green}0.8}]{\%} & - & - & - \\
2535 C (dia) & $a$ [\AA] & 3.527 & 3.567 & - & - & 3.567 \\
2536 & $\Delta_a$ [\%] & \unit[{\color{green}1.1}]{\%} & \unit[{\color{green}0.01}]{\%} & - & - & - \\
2537 & $E_{\text{coh}}$ [eV] & -8.812 & -7.703 & - & - & -7.374 \\
2538 & $\Delta_E$ [\%] & \unit[{\color{red}19.5}]{\%} & \unit[{\color{orange}4.5}]{\%} & - & - & - \\
2540 3C-SiC & $a$ [\AA] & 4.319 & 4.370 & 4.330 & 4.379 & 4.359 \\
2541 & $\Delta_a$ [\%] & \unit[{\color{green}0.9}]{\%} & \unit[{\color{green}0.3}]{\%} & \unit[{\color{green}0.7}]{\%} & \unit[{\color{green}0.5}]{\%} & - \\
2542 & $E_{\text{coh}}$ [eV] & -7.318 & -6.426 & -7.371 & -6.491 & -6.340 \\
2543 & $\Delta_E$ [\%] & \unit[{\color{red}15.4}]{\%} & \unit[{\color{green}1.4}]{\%} & \unit[{\color{red}16.3}]{\%} & \unit[{\color{orange}2.4}]{\%} & - \\
2550 \begin{minipage}{7cm}
2552 \begin{tabular}{l c c c}
2555 & Si (dia) & C (dia) & 3C-SiC \\
2557 $a$ [\AA] & 5.458 & 3.562 & 4.365 \\
2558 $\Delta_a$ [\%] & 0.5 & 0.1 & 0.1 \\
2560 $E_{\text{coh}}$ [eV] & -4.577 & -7.695 & -6.419 \\
2561 $\Delta_E$ [\%] & 1.1 & 4.4 & 1.2 \\
2567 \begin{minipage}{5cm}
2568 $\leftarrow$ entire parameter set
2581 \begin{minipage}{6cm}
2583 \includegraphics[width=6cm]{sic_32pc_gamma_cutoff_lc.ps}
2586 \begin{minipage}{6cm}
2588 Lattice constants with respect to the PW cut-off energy
2592 \begin{minipage}{6cm}
2594 \includegraphics[width=6cm]{si_self_int_thesis.ps}
2597 \begin{minipage}{6cm}
2599 Defect formation energy with respect to the size of the supercell\\[0.1cm]