]> hackdaworld.org Git - lectures/latex.git/blob - posic/talks/mpi_app.tex
started point defects
[lectures/latex.git] / posic / talks / mpi_app.tex
1 \pdfoutput=0
2 %\documentclass[landscape,semhelv,draft]{seminar}
3 \documentclass[landscape,semhelv]{seminar}
4
5 \usepackage{verbatim}
6 \usepackage[greek,german]{babel}
7 \usepackage[latin1]{inputenc}
8 \usepackage[T1]{fontenc}
9 \usepackage{amsmath}
10 \usepackage{stmaryrd}
11 \usepackage{latexsym}
12 \usepackage{ae}
13
14 \usepackage{calc}               % Simple computations with LaTeX variables
15 \usepackage{caption}            % Improved captions
16 \usepackage{fancybox}           % To have several backgrounds
17
18 \usepackage{fancyhdr}           % Headers and footers definitions
19 \usepackage{fancyvrb}           % Fancy verbatim environments
20 \usepackage{pstricks}           % PSTricks with the standard color package
21
22 \usepackage{pstricks}
23 \usepackage{pst-node}
24 \usepackage{pst-grad}
25
26 %\usepackage{epic}
27 %\usepackage{eepic}
28
29 \usepackage{layout}
30
31 \usepackage{graphicx}
32 \graphicspath{{../img/}}
33
34 \usepackage{miller}
35
36 \usepackage[setpagesize=false]{hyperref}
37
38 % units
39 \usepackage{units}
40
41 \usepackage{semcolor}
42 \usepackage{semlayer}           % Seminar overlays
43 \usepackage{slidesec}           % Seminar sections and list of slides
44
45 \input{seminar.bug}             % Official bugs corrections
46 \input{seminar.bg2}             % Unofficial bugs corrections
47
48 \articlemag{1}
49
50 \special{landscape}
51
52 % font
53 %\usepackage{cmbright}
54 %\renewcommand{\familydefault}{\sfdefault}
55 %\usepackage{mathptmx}
56
57 \usepackage{upgreek}
58
59 \newcommand{\headdiplom}{
60 \begin{pspicture}(0,0)(0,0)
61 \rput(6.0,0.2){\psframebox[fillstyle=gradient,gradbegin=red,gradend=white,gradlines=1000,gradmidpoint=1,linestyle=none]{
62 \begin{minipage}{14cm}
63 \hfill
64 \vspace{0.7cm}
65 \end{minipage}
66 }}
67 \end{pspicture}
68 }
69
70 \newcommand{\headphd}{
71 \begin{pspicture}(0,0)(0,0)
72 \rput(6.0,0.2){\psframebox[fillstyle=gradient,gradbegin=blue,gradend=white,gradlines=1000,gradmidpoint=1,linestyle=none]{
73 \begin{minipage}{14cm}
74 \hfill
75 \vspace{0.7cm}
76 \end{minipage}
77 }}
78 \end{pspicture}
79 }
80
81 \begin{document}
82
83 \extraslideheight{10in}
84 \slideframe{plain}
85
86 \pagestyle{empty}
87
88 % specify width and height
89 \slidewidth 26.3cm 
90 \slideheight 19.9cm 
91
92 % margin
93 \def\slidetopmargin{-0.15cm}
94
95 \newcommand{\ham}{\mathcal{H}}
96 \newcommand{\pot}{\mathcal{V}}
97 \newcommand{\foo}{\mathcal{U}}
98 \newcommand{\vir}{\mathcal{W}}
99
100 % itemize level ii
101 \renewcommand\labelitemii{{\color{gray}$\bullet$}}
102
103 % nice phi
104 \renewcommand{\phi}{\varphi}
105
106 % roman letters
107 \newcommand{\RM}[1]{\MakeUppercase{\romannumeral #1{}}}
108
109 % colors
110 \newrgbcolor{si-yellow}{.6 .6 0}
111 \newrgbcolor{hb}{0.75 0.77 0.89}
112 \newrgbcolor{lbb}{0.75 0.8 0.88}
113 \newrgbcolor{hlbb}{0.825 0.88 0.968}
114 \newrgbcolor{lachs}{1.0 .93 .81}
115
116 % shortcuts
117 \newcommand{\si}{Si$_{\text{i}}${}}
118 \newcommand{\ci}{C$_{\text{i}}${}}
119 \newcommand{\cs}{C$_{\text{sub}}${}}
120 \newcommand{\degc}[1]{\unit[#1]{$^{\circ}$C}{}}
121 \newcommand{\distn}[1]{\unit[#1]{nm}{}}
122 \newcommand{\dista}[1]{\unit[#1]{\AA}{}}
123 \newcommand{\perc}[1]{\unit[#1]{\%}{}}
124
125 % no vertical centering
126 %\centerslidesfalse
127
128 % layout check
129 %\layout
130 \begin{slide}
131 \center
132 {\Huge
133 E\\
134 F\\
135 G\\
136 A B C D E F G H G F E D C B A
137 G\\
138 F\\
139 E\\
140 }
141 \end{slide}
142
143 % topic
144
145 \begin{slide}
146 \begin{center}
147
148  \vspace{16pt}
149
150  {\LARGE\bf
151   Atomistic simulation studies\\[0.2cm]
152   in the C/Si system
153  }
154
155  \vspace{48pt}
156
157  \textsc{Frank Zirkelbach}
158
159  \vspace{48pt}
160
161  Application talk at the Max Planck Institute for Solid State Research
162
163  \vspace{08pt}
164
165  Stuttgart, November 2011
166
167 \end{center}
168 \end{slide}
169
170 % no vertical centering
171 \centerslidesfalse
172
173 \ifnum1=0
174
175 % intro
176
177 \begin{slide}
178
179 %{\large\bf
180 % Phase diagram of the C/Si system\\
181 %}
182
183 \vspace*{0.2cm}
184
185 \begin{minipage}{6.5cm}
186 \includegraphics[width=6.5cm]{si-c_phase.eps}
187 \begin{center}
188 {\tiny
189 R. I. Scace and G. A. Slack, J. Chem. Phys. 30, 1551 (1959)
190 }
191 \end{center}
192 \begin{pspicture}(0,0)(0,0)
193 \psellipse[linecolor=blue,linewidth=0.1cm](3.55,4.0)(0.5,2.9)
194 \end{pspicture}
195 \end{minipage}
196 \begin{minipage}{6cm}
197 {\bf Phase diagram of the C/Si system}\\[0.2cm]
198 {\color{blue}Stoichiometric composition}
199 \begin{itemize}
200 \item only chemical stable compound
201 \item wide band gap semiconductor\\
202       \underline{silicon carbide}, SiC
203 \end{itemize}
204 \end{minipage}
205
206 \end{slide}
207
208 % motivation / properties / applications of silicon carbide
209
210 \begin{slide}
211
212 \vspace*{1.8cm}
213
214 \small
215
216 \begin{pspicture}(0,0)(13.5,5)
217
218  \psframe*[linecolor=hb](-0.2,0)(12.9,5)
219
220  \pspolygon[linecolor=hlbb,fillcolor=hlbb,fillstyle=solid](5.2,1)(6.5,1)(6.5,3)(5.2,3)
221  \pspolygon[linecolor=hlbb,fillcolor=hlbb,fillstyle=solid](6.4,0.5)(7.7,2)(7.7,2)(6.4,3.5)
222
223  \rput[lt](0,4.6){\color{gray}PROPERTIES}
224
225  \rput[lt](0.3,4){wide band gap}
226  \rput[lt](0.3,3.5){high electric breakdown field}
227  \rput[lt](0.3,3){good electron mobility}
228  \rput[lt](0.3,2.5){high electron saturation drift velocity}
229  \rput[lt](0.3,2){high thermal conductivity}
230
231  \rput[lt](0.3,1.5){hard and mechanically stable}
232  \rput[lt](0.3,1){chemically inert}
233
234  \rput[lt](0.3,0.5){radiation hardness}
235
236  \rput[rt](12.7,4.6){\color{gray}APPLICATIONS}
237
238  \rput[rt](12.5,3.85){high-temperature, high power}
239  \rput[rt](12.5,3.5){and high-frequency}
240  \rput[rt](12.5,3.15){electronic and optoelectronic devices}
241
242  \rput[rt](12.5,2.35){material suitable for extreme conditions}
243  \rput[rt](12.5,2){microelectromechanical systems}
244  \rput[rt](12.5,1.65){abrasives, cutting tools, heating elements}
245
246  \rput[rt](12.5,0.85){first wall reactor material, detectors}
247  \rput[rt](12.5,0.5){and electronic devices for space}
248
249 \end{pspicture}
250
251 \begin{picture}(0,0)(5,-162)
252 \includegraphics[height=2.2cm]{3C_SiC_bs.eps}
253 \end{picture}
254 \begin{picture}(0,0)(-120,-162)
255 \includegraphics[height=2.2cm]{nasa_600c_led.eps}
256 \end{picture}
257 \begin{picture}(0,0)(-270,-162)
258 \includegraphics[height=2.2cm]{6h-sic_3c-sic.eps}
259 \end{picture}
260 %%%%
261 \begin{picture}(0,0)(10,65)
262 \includegraphics[height=2.8cm]{sic_switch.eps}
263 \end{picture}
264 %\begin{picture}(0,0)(-243,65)
265 \begin{picture}(0,0)(-110,65)
266 \includegraphics[height=2.8cm]{ise_99.eps}
267 \end{picture}
268 %\begin{picture}(0,0)(-135,65)
269 \begin{picture}(0,0)(-100,65)
270 \includegraphics[height=1.2cm]{infineon_schottky.eps}
271 \end{picture}
272 \begin{picture}(0,0)(-233,65)
273 \includegraphics[height=2.8cm]{solar_car.eps}
274 \end{picture}
275
276 \end{slide}
277
278 % motivation
279
280 \begin{slide}
281
282  {\large\bf
283   Polytypes of SiC\\[0.4cm]
284  }
285
286 \includegraphics[width=3.8cm]{cubic_hex.eps}\\
287 \begin{minipage}{1.9cm}
288 {\tiny cubic (twist)}
289 \end{minipage}
290 \begin{minipage}{2.9cm}
291 {\tiny hexagonal (no twist)}
292 \end{minipage}
293
294 \begin{picture}(0,0)(-150,0)
295  \includegraphics[width=7cm]{polytypes.eps}
296 \end{picture}
297
298 \vspace{0.6cm}
299
300 \footnotesize
301
302 \begin{tabular}{l c c c c c c}
303 \hline
304  & 3C-SiC & 4H-SiC & 6H-SiC & Si & GaN & Diamond\\
305 \hline
306 Hardness [Mohs] & \multicolumn{3}{c}{------ 9.6 ------}& 6.5 & - & 10 \\
307 Band gap [eV] & 2.36 & 3.23 & 3.03 & 1.12 & 3.39 & 5.5 \\
308 Break down field [$10^6$ V/cm] & 4 & 3 & 3.2 & 0.6 & 5 & 10 \\
309 Saturation drift velocity [$10^7$ cm/s] & 2.5 & 2.0 & 2.0 & 1 & 2.7 & 2.7 \\
310 Electron mobility [cm$^2$/Vs] & 800 & 900 & 400 & 1100 & 900 & 2200 \\
311 Hole mobility [cm$^2$/Vs] & 320 & 120 & 90 & 420 & 150 & 1600 \\
312 Thermal conductivity [W/cmK] & 5.0 & 4.9 & 4.9 & 1.5 & 1.3 & 22 \\
313 \hline
314 \end{tabular}
315
316 \begin{pspicture}(0,0)(0,0)
317 \psellipse[linecolor=green](5.7,2.10)(0.4,0.5)
318 \end{pspicture}
319 \begin{pspicture}(0,0)(0,0)
320 \psellipse[linecolor=green](5.6,0.92)(0.4,0.2)
321 \end{pspicture}
322 \begin{pspicture}(0,0)(0,0)
323 \psellipse[linecolor=red](10.45,0.45)(0.4,0.2)
324 \end{pspicture}
325
326 \end{slide}
327
328 % fabrication
329
330 \begin{slide}
331
332  {\large\bf
333   Fabrication of silicon carbide
334  }
335
336  \small
337  
338  \vspace{2pt}
339
340 \begin{center}
341  {\color{gray}
342  \emph{Silicon carbide --- Born from the stars, perfected on earth.}
343  }
344 \end{center}
345
346 \vspace{2pt}
347
348 SiC thin films by MBE \& CVD
349 \begin{itemize}
350  \item Much progress achieved in homo/heteroepitaxial SiC thin film growth
351  \item \underline{Commercially available} semiconductor power devices based on
352        \underline{\foreignlanguage{greek}{a}-SiC}
353  \item Production of favored \underline{3C-SiC} material
354        \underline{less advanced}
355  \item Quality and size not yet sufficient
356 \end{itemize}
357 \begin{picture}(0,0)(-310,-20)
358   \includegraphics[width=2.0cm]{cree.eps}
359 \end{picture}
360
361 \vspace{-0.2cm}
362
363 Alternative approach:
364 Ion beam synthesis (IBS) of burried 3C-SiC layers in Si\hkl(1 0 0)
365
366 \vspace{0.2cm}
367
368 \scriptsize
369
370 \framebox{
371 \begin{minipage}{3.15cm}
372  \begin{center}
373 \includegraphics[width=3cm]{imp.eps}\\
374  {\tiny
375   Carbon implantation
376  }
377  \end{center}
378 \end{minipage}
379 \begin{minipage}{3.15cm}
380  \begin{center}
381 \includegraphics[width=3cm]{annealing.eps}\\
382  {\tiny
383   \unit[12]{h} annealing at \degc{1200}
384  }
385  \end{center}
386 \end{minipage}
387 }
388 \begin{minipage}{5.5cm}
389  \includegraphics[width=5.8cm]{ibs_3c-sic.eps}\\[-0.2cm]
390  \begin{center}
391  {\tiny
392   XTEM: single crystalline 3C-SiC in Si\hkl(1 0 0)
393  }
394  \end{center}
395 \end{minipage}
396
397 \end{slide}
398
399 % contents
400
401 \begin{slide}
402
403 {\large\bf
404  Systematic investigation of C implantations into Si
405 }
406
407 \vspace{1.7cm}
408 \begin{center}
409 \hspace{-1.0cm}
410 \includegraphics[width=0.75\textwidth]{imp_inv.eps}
411 \end{center}
412
413 \end{slide}
414
415 % outline
416
417 \begin{slide}
418
419 {\large\bf
420  Outline
421 }
422
423 \vspace{1.7cm}
424 \begin{center}
425 \hspace{-1.0cm}
426 \includegraphics[width=0.75\textwidth]{imp_inv.eps}
427 \end{center}
428
429 \begin{pspicture}(0,0)(0,0)
430 \rput(6.0,7.0){\rnode{init}{\psframebox[fillstyle=gradient,gradbegin=red,gradend=white,gradlines=1000,gradmidpoint=1.0,linestyle=none]{
431 \begin{minipage}{11cm}
432 {\color{black}Diploma thesis}\\
433  \underline{Monte Carlo} simulation modeling the selforganization process\\
434  leading to periodic arrays of nanometric amorphous SiC precipitates
435 \end{minipage}
436 }}}
437 \end{pspicture}
438 \begin{pspicture}(0,0)(0,0)
439 \rput(6.0,-0.5){\rnode{init}{\psframebox[fillstyle=gradient,gradbegin=blue,gradend=white,gradmidpoint=1.0,gradlines=1000,linestyle=none]{
440 \begin{minipage}{11cm}
441 {\color{black}Doctoral studies}\\
442  Classical potential \underline{molecular dynamics} simulations \ldots\\
443  \underline{Density functional theory} calculations \ldots\\[0.2cm]
444  \ldots on defect formation and SiC precipitation in Si
445 \end{minipage}
446 }}}
447 \end{pspicture}
448 \begin{pspicture}(0,0)(0,0)
449 \psellipse[linecolor=red,linewidth=0.05cm](5,3.0)(0.8,1.0)
450 \end{pspicture}
451 \begin{pspicture}(0,0)(0,0)
452 \psellipse[linecolor=blue,linewidth=0.05cm](8.2,3.2)(1.5,1.6)
453 \end{pspicture}
454
455 \end{slide}
456
457 \begin{slide}
458
459 \headdiplom
460 {\large\bf
461  Selforganization of nanometric amorphous SiC lamellae
462 }
463
464 \small
465
466 \vspace{0.2cm}
467
468 \begin{itemize}
469  \item Regularly spaced, nanometric spherical\\
470        and lamellar amorphous inclusions\\
471        at the upper a/c interface
472  \item Carbon accumulation\\
473        in amorphous volumes
474 \end{itemize}
475
476 \vspace{0.4cm}
477
478 \begin{minipage}{12cm}
479 \includegraphics[width=9cm]{../../nlsop/img/k393abild1_e_l.eps}\\
480 {\scriptsize
481 XTEM bright-field, \unit[180]{keV} C$^+ \rightarrow$ Si,
482 {\color{red}\underline{\degc{150}}},
483 Dose: \unit[4.3 $\times 10^{17}$]{cm$^{-2}$}
484 }
485 \end{minipage}
486
487 \begin{picture}(0,0)(-182,-215)
488 \begin{minipage}{6.5cm}
489 \begin{center}
490 \includegraphics[width=6.5cm]{../../nlsop/img/eftem.eps}\\[-0.2cm]
491 {\scriptsize
492 XTEM bright-field and respective EFTEM C map
493 }
494 \end{center}
495 \end{minipage}
496 \end{picture}
497
498 \end{slide}
499
500 \begin{slide}
501
502 \headdiplom
503 {\large\bf
504  Model displaying the formation of ordered lamellae
505 }
506
507 \vspace{0.1cm}
508
509 \begin{center}
510  \includegraphics[width=8.0cm]{../../nlsop/img/modell_ng_e.eps}
511 \end{center}
512
513 \footnotesize
514
515 \begin{itemize}
516 \item Supersaturation of C in c-Si\\
517       $\rightarrow$ {\bf Carbon induced} nucleation of spherical
518       SiC$_x$-precipitates
519 \item High interfacial energy between 3C-SiC and c-Si\\
520       $\rightarrow$ {\bf Amorphous} precipitates
521 \item \unit[20-- 30]{\%} lower silicon density of a-SiC$_x$ compared to c-Si\\
522       $\rightarrow$ {\bf Lateral strain} (black arrows)
523 \item Implantation range near surface\\
524       $\rightarrow$ {\bf Relaxation} of {\bf vertical strain component}
525 \item Reduction of the carbon supersaturation in c-Si\\
526       $\rightarrow$ {\bf Carbon diffusion} into amorphous volumina
527       (white arrows)
528 \item Remaining lateral strain\\
529       $\rightarrow$ {\bf Strain enhanced} lateral amorphisation
530 \item Absence of crystalline neighbours (structural information)\\
531       $\rightarrow$ {\bf Stabilization} of amorphous inclusions 
532       {\bf against recrystallization}
533 \end{itemize}
534
535 \end{slide}
536
537 \begin{slide}
538
539 \headdiplom
540 {\large\bf
541  Implementation of the Monte Carlo code
542 }
543
544 \small
545
546 \begin{enumerate}
547  \item \underline{Amorphization / Recrystallization}\\
548        Ion collision in discretized target determined by random numbers
549        distributed according to nuclear energy loss.
550        Amorphization/recrystallization probability:
551 \[
552 p_{c \rightarrow a}(\vec{r}) = {\color{green} p_b} + {\color{blue} p_c c_C(\vec{r})} + {\color{red} \sum_{\textrm{amorphous neighbours}} \frac{p_s c_C(\vec{r'})}{(r-r')^2}}
553 \]
554 \begin{itemize}
555  \item {\color{green} $p_b$} normal `ballistic' amorphization
556  \item {\color{blue} $p_c$} carbon induced amorphization
557  \item {\color{red} $p_s$} stress enhanced amorphization
558 \end{itemize}
559 \[
560 p_{a \rightarrow c}(\vec r) = (1 - p_{c \rightarrow a}(\vec r)) \Big(1 - \frac{\sum_{direct \, neighbours} \delta (\vec{r'})}{6} \Big) \, \textrm{,}
561 \]
562 \[
563 \delta (\vec r) = \left\{
564 \begin{array}{ll}
565         1 & \textrm{if volume at position $\vec r$ is amorphous} \\
566         0 & \textrm{otherwise} \\
567 \end{array}
568 \right.
569 \]
570  \item \underline{Carbon incorporation}\\
571        Incorporation volume determined according to implantation profile
572  \item \underline{Diffusion / Sputtering}
573        \begin{itemize}
574         \item Transfer fraction of C atoms
575               of crystalline into neighbored amorphous volumes
576         \item Remove surface layer
577        \end{itemize}
578 \end{enumerate}
579
580 \end{slide}
581
582 \begin{slide}
583
584 \begin{minipage}{3.7cm}
585 \begin{pspicture}(0,0)(0,0)
586 \rput(1.7,0.2){\psframebox[fillstyle=gradient,gradbegin=red,gradend=white,gradlines=1000,gradangle=10,gradmidpoint=1,linestyle=none]{
587 \begin{minipage}{3.7cm}
588 \hfill
589 \vspace{0.7cm}
590 \end{minipage}
591 }}
592 \end{pspicture}
593 {\large\bf
594  Results
595 }
596
597 \footnotesize
598
599 \vspace{1.2cm}
600
601 Evolution of the \ldots
602 \begin{itemize}
603  \item continuous\\
604        amorphous layer
605  \item a/c interface
606  \item lamellar precipitates
607 \end{itemize}
608 \ldots reproduced!\\[1.4cm]
609
610 {\color{blue}
611 \begin{center}
612 Experiment \& simulation\\
613 in good agreement\\[1.0cm]
614
615 Simulation is able to model the whole depth region\\[1.2cm]
616 \end{center}
617 }
618
619 \end{minipage}
620 \begin{minipage}{0.5cm}
621 \vfill
622 \end{minipage}
623 \begin{minipage}{8.0cm}
624  \vspace{-0.3cm}
625  \includegraphics[width=9cm]{../../nlsop/img/dosis_entwicklung_ng_e_1-2.eps}\\
626  \includegraphics[width=9cm]{../../nlsop/img/dosis_entwicklung_ng_e2_2-2.eps}
627 \end{minipage}
628
629 \end{slide}
630
631 \begin{slide}
632
633 \headdiplom
634 {\large\bf
635  Structural \& compositional details
636 }
637
638 \begin{minipage}[t]{7.5cm}
639 \includegraphics[height=6.5cm]{../../nlsop/img/ac_cconc_ver2_e.eps}\\
640 \end{minipage}
641 \begin{minipage}[t]{5.0cm}
642 \includegraphics[height=6.5cm]{../../nlsop/img/97_98_e.eps}
643 \end{minipage}
644
645 \footnotesize
646
647 \vspace{-0.1cm}
648
649 \begin{itemize}
650  \item Fluctuation of C concentration in lamellae region
651  \item \unit[8--10]{at.\%} C saturation limit
652        within the respective conditions
653  \item Complementarily arranged and alternating sequence of layers\\
654        with a high and low amount of amorphous regions
655  \item C accumulation in the amorphous phase / Origin of stress
656 \end{itemize}
657
658 \begin{picture}(0,0)(-260,-50)
659 \framebox{
660 \begin{minipage}{3cm}
661 \begin{center}
662 {\color{blue}
663 Precipitation process\\
664 gets traceable\\
665 by simulation!
666 }
667 \end{center}
668 \end{minipage}
669 }
670 \end{picture}
671
672 \end{slide}
673
674 \begin{slide}
675
676 \headphd
677 {\large\bf
678  Formation of epitaxial single crystalline 3C-SiC
679 }
680
681 \footnotesize
682
683 \vspace{0.2cm}
684
685 \begin{center}
686 \begin{itemize}
687  \item \underline{Implantation step 1}\\[0.1cm]
688         Almost stoichiometric dose | \unit[180]{keV} | \degc{500}\\
689         $\Rightarrow$ Epitaxial {\color{blue}3C-SiC} layer \&
690         {\color{blue}precipitates}
691  \item \underline{Implantation step 2}\\[0.1cm]
692         Little remaining dose | \unit[180]{keV} | \degc{250}\\
693         $\Rightarrow$
694         Destruction/Amorphization of precipitates at layer interface
695  \item \underline{Annealing}\\[0.1cm]
696        \unit[10]{h} at \degc{1250}\\
697        $\Rightarrow$ Homogeneous 3C-SiC layer with sharp interfaces
698 \end{itemize}
699 \end{center}
700
701 \begin{minipage}{7cm}
702 \includegraphics[width=7cm]{ibs_3c-sic.eps}
703 \end{minipage}
704 \begin{minipage}{5cm}
705 \begin{pspicture}(0,0)(0,0)
706 \rnode{box}{
707 \psframebox[fillstyle=solid,fillcolor=white,linecolor=blue,linestyle=solid]{
708 \begin{minipage}{5.3cm}
709  \begin{center}
710  {\color{blue}
711   3C-SiC precipitation\\
712   not yet fully understood
713  }
714  \end{center}
715  \vspace*{0.1cm}
716  \renewcommand\labelitemi{$\Rightarrow$}
717  Details of the SiC precipitation
718  \begin{itemize}
719   \item significant technological progress\\
720         in SiC thin film formation
721   \item perspectives for processes relying\\
722         upon prevention of SiC precipitation
723  \end{itemize}
724 \end{minipage}
725 }}
726 \rput(-6.8,5.4){\pnode{h0}}
727 \rput(-3.0,5.4){\pnode{h1}}
728 \ncline[linecolor=blue]{-}{h0}{h1}
729 \ncline[linecolor=blue]{->}{h1}{box}
730 \end{pspicture}
731 \end{minipage}
732
733 \end{slide}
734
735 \begin{slide}
736
737 \headphd
738 {\large\bf
739   Supposed precipitation mechanism of SiC in Si
740 }
741
742  \scriptsize
743
744  \vspace{0.1cm}
745
746  \framebox{
747  \begin{minipage}{3.6cm}
748  \begin{center}
749  Si \& SiC lattice structure\\[0.1cm]
750  \includegraphics[width=2.3cm]{sic_unit_cell.eps}
751  \end{center}
752 {\tiny
753  \begin{minipage}{1.7cm}
754 \underline{Silicon}\\
755 {\color{yellow}$\bullet$} Si | {\color{gray}$\bullet$} Si\\
756 $a=\unit[5.429]{\\A}$\\
757 $\rho^*_{\text{Si}}=\unit[100]{\%}$
758  \end{minipage}
759  \begin{minipage}{1.7cm}
760 \underline{Silicon carbide}\\
761 {\color{yellow}$\bullet$} Si | {\color{gray}$\bullet$} C\\
762 $a=\unit[4.359]{\\A}$\\
763 $\rho^*_{\text{Si}}=\unit[97]{\%}$
764  \end{minipage}
765 }
766  \end{minipage}
767  }
768  \hspace{0.1cm}
769  \begin{minipage}{4.1cm}
770  \begin{center}
771  \includegraphics[width=3.3cm]{tem_c-si-db.eps}
772  \end{center}
773  \end{minipage}
774  \hspace{0.1cm}
775  \begin{minipage}{4.0cm}
776  \begin{center}
777  \includegraphics[width=3.3cm]{tem_3c-sic.eps}
778  \end{center}
779  \end{minipage}
780
781  \vspace{0.1cm}
782
783  \begin{minipage}{4.0cm}
784  \begin{center}
785  C-Si dimers (dumbbells)\\[-0.1cm]
786  on Si interstitial sites
787  \end{center}
788  \end{minipage}
789  \hspace{0.1cm}
790  \begin{minipage}{4.1cm}
791  \begin{center}
792  Agglomeration of C-Si dumbbells\\[-0.1cm]
793  $\Rightarrow$ dark contrasts
794  \end{center}
795  \end{minipage}
796  \hspace{0.1cm}
797  \begin{minipage}{4.0cm}
798  \begin{center}
799  Precipitation of 3C-SiC in Si\\[-0.1cm]
800  $\Rightarrow$ Moir\'e fringes\\[-0.1cm]
801  \& release of Si self-interstitials
802  \end{center}
803  \end{minipage}
804
805  \vspace{0.1cm}
806
807  \begin{minipage}{4.0cm}
808  \begin{center}
809  \includegraphics[width=3.3cm]{sic_prec_seq_01.eps}
810  \end{center}
811  \end{minipage}
812  \hspace{0.1cm}
813  \begin{minipage}{4.1cm}
814  \begin{center}
815  \includegraphics[width=3.3cm]{sic_prec_seq_02.eps}
816  \end{center}
817  \end{minipage}
818  \hspace{0.1cm}
819  \begin{minipage}{4.0cm}
820  \begin{center}
821  \includegraphics[width=3.3cm]{sic_prec_seq_03.eps}
822  \end{center}
823  \end{minipage}
824
825 \begin{pspicture}(0,0)(0,0)
826 \psline[linewidth=2pt]{->}(8.3,2)(8.8,2)
827 \psellipse[linecolor=blue](11.1,6.0)(0.3,0.5)
828 \rput{-20}{\psellipse[linecolor=blue](3.1,8.2)(0.3,0.5)}
829 \psline[linewidth=2pt]{->}(3.9,2)(4.4,2)
830 \rput(11.8,0.3){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=hb]{
831  $4a_{\text{Si}}=5a_{\text{SiC}}$
832  }}}
833 \rput(11.5,8){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=hb]{
834 \hkl(h k l) planes match
835  }}}
836 \rput(8.5,6.2){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=hb]{
837 r = \unit[2--4]{nm}
838  }}}
839 \end{pspicture}
840
841 \end{slide}
842
843 \begin{slide}
844
845 \headphd
846 {\large\bf
847  Supposed precipitation mechanism of SiC in Si
848 }
849
850  \scriptsize
851
852  \vspace{0.1cm}
853
854  \framebox{
855  \begin{minipage}{3.6cm}
856  \begin{center}
857  Si \& SiC lattice structure\\[0.1cm]
858  \includegraphics[width=2.3cm]{sic_unit_cell.eps}
859  \end{center}
860 {\tiny
861  \begin{minipage}{1.7cm}
862 \underline{Silicon}\\
863 {\color{yellow}$\bullet$} Si | {\color{gray}$\bullet$} Si\\
864 $a=\unit[5.429]{\\A}$\\
865 $\rho^*_{\text{Si}}=\unit[100]{\%}$
866  \end{minipage}
867  \begin{minipage}{1.7cm}
868 \underline{Silicon carbide}\\
869 {\color{yellow}$\bullet$} Si | {\color{gray}$\bullet$} C\\
870 $a=\unit[4.359]{\\A}$\\
871 $\rho^*_{\text{Si}}=\unit[97]{\%}$
872  \end{minipage}
873 }
874  \end{minipage}
875  }
876  \hspace{0.1cm}
877  \begin{minipage}{4.1cm}
878  \begin{center}
879  \includegraphics[width=3.3cm]{tem_c-si-db.eps}
880  \end{center}
881  \end{minipage}
882  \hspace{0.1cm}
883  \begin{minipage}{4.0cm}
884  \begin{center}
885  \includegraphics[width=3.3cm]{tem_3c-sic.eps}
886  \end{center}
887  \end{minipage}
888
889  \vspace{0.1cm}
890
891  \begin{minipage}{4.0cm}
892  \begin{center}
893  C-Si dimers (dumbbells)\\[-0.1cm]
894  on Si interstitial sites
895  \end{center}
896  \end{minipage}
897  \hspace{0.1cm}
898  \begin{minipage}{4.1cm}
899  \begin{center}
900  Agglomeration of C-Si dumbbells\\[-0.1cm]
901  $\Rightarrow$ dark contrasts
902  \end{center}
903  \end{minipage}
904  \hspace{0.1cm}
905  \begin{minipage}{4.0cm}
906  \begin{center}
907  Precipitation of 3C-SiC in Si\\[-0.1cm]
908  $\Rightarrow$ Moir\'e fringes\\[-0.1cm]
909  \& release of Si self-interstitials
910  \end{center}
911  \end{minipage}
912
913  \vspace{0.1cm}
914
915  \begin{minipage}{4.0cm}
916  \begin{center}
917  \includegraphics[width=3.3cm]{sic_prec_seq_01.eps}
918  \end{center}
919  \end{minipage}
920  \hspace{0.1cm}
921  \begin{minipage}{4.1cm}
922  \begin{center}
923  \includegraphics[width=3.3cm]{sic_prec_seq_02.eps}
924  \end{center}
925  \end{minipage}
926  \hspace{0.1cm}
927  \begin{minipage}{4.0cm}
928  \begin{center}
929  \includegraphics[width=3.3cm]{sic_prec_seq_03.eps}
930  \end{center}
931  \end{minipage}
932
933 \begin{pspicture}(0,0)(0,0)
934 \psline[linewidth=2pt]{->}(8.3,2)(8.8,2)
935 \psellipse[linecolor=blue](11.1,6.0)(0.3,0.5)
936 \rput{-20}{\psellipse[linecolor=blue](3.1,8.2)(0.3,0.5)}
937 \psline[linewidth=2pt]{->}(3.9,2)(4.4,2)
938 \rput(11.8,0.3){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=hb]{
939  $4a_{\text{Si}}=5a_{\text{SiC}}$
940  }}}
941 \rput(11.5,8){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=hb]{
942 \hkl(h k l) planes match
943  }}}
944 \rput(8.5,6.2){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=hb]{
945 r = \unit[2--4]{nm}
946  }}}
947 % controversial view!
948 \rput(6.5,5.0){\psframebox[fillstyle=solid,opacity=0.5,fillcolor=black]{
949 \begin{minipage}{14cm}
950 \hfill
951 \vspace{12cm}
952 \end{minipage}
953 }}
954 \rput(6.5,5.3){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=white,linewidth=0.1cm]{
955 \begin{minipage}{10cm}
956 \small
957 \vspace*{0.2cm}
958 \begin{center}
959 {\color{gray}\bf Controversial findings}
960 \end{center}
961 \begin{itemize}
962 \item High-temperature implantation {\tiny\color{gray}/Nejim~et~al./}
963  \begin{itemize}
964   \item C incorporated {\color{blue}substitutionally} on regular Si lattice sites
965   \item \si{} reacting with further C in cleared volume
966  \end{itemize}
967 \item Annealing behavior {\tiny\color{gray}/Serre~et~al./}
968  \begin{itemize}
969   \item Room temperature implantation $\rightarrow$ high C diffusion
970   \item Elevated temperature implantation $\rightarrow$ no C redistribution
971  \end{itemize}
972  $\Rightarrow$ mobile {\color{red}\ci} opposed to
973  stable {\color{blue}\cs{}} configurations
974 \item Strained silicon \& Si/SiC heterostructures
975       {\tiny\color{gray}/Strane~et~al./Guedj~et~al./}
976  \begin{itemize}
977   \item {\color{blue}Coherent} SiC precipitates (tensile strain)
978   \item Incoherent SiC (strain relaxation)
979  \end{itemize}
980 \end{itemize}
981 \vspace{0.1cm}
982 \begin{center}
983 {\Huge${\lightning}$} \hspace{0.3cm}
984 {\color{blue}\cs{}} --- vs --- {\color{red}\ci} \hspace{0.3cm}
985 {\Huge${\lightning}$}
986 \end{center}
987 \vspace{0.2cm}
988 \end{minipage}
989  }}}
990 \end{pspicture}
991
992 \end{slide}
993
994 \begin{slide}
995
996 \headphd
997 {\large\bf
998  Utilized computational methods
999 }
1000
1001 \vspace{0.3cm}
1002
1003 \small
1004
1005 {\bf Molecular dynamics (MD)}\\[0.1cm]
1006 \scriptsize
1007 \begin{tabular}{| p{4.5cm} | p{7.5cm} |}
1008 \hline
1009 System of $N$ particles &
1010 $N=5832\pm 1$ (Defects), $N=238328+6000$ (Precipitation)\\
1011 Phase space propagation &
1012 Velocity Verlet | timestep: \unit[1]{fs} \\
1013 Analytical interaction potential &
1014 Tersoff-like {\color{red}short-range}, {\color{blue}bond order} potential
1015 (Erhart/Albe)
1016 $\displaystyle
1017 E = \frac{1}{2} \sum_{i \neq j} \pot_{ij}, \quad
1018     \pot_{ij} = {\color{red}f_C(r_{ij})}
1019     \left[ f_R(r_{ij}) + {\color{blue}b_{ij}} f_A(r_{ij}) \right]
1020 $\\
1021 Observables: time/ensemble averages &
1022 NpT (isothermal-isobaric) | Berendsen thermostat/barostat\\
1023 \hline
1024 \end{tabular}
1025
1026 \small
1027
1028 \vspace{0.3cm}
1029
1030 {\bf Density functional theory (DFT)}
1031
1032 \scriptsize
1033
1034 \begin{minipage}[t]{6cm}
1035 \begin{itemize}
1036  \item Hohenberg-Kohn theorem:\\
1037        $\Psi_0(r_1,r_2,\ldots,r_N)=\Psi[n_0(r)]$, $E_0=E[n_0]$
1038  \item Kohn-Sham approach:\\
1039        Single-particle effective theory
1040 \end{itemize}
1041 \hrule
1042 \begin{itemize}
1043 \item Code: \textsc{vasp}
1044 \item Plane wave basis set
1045 %$\displaystyle
1046 %\Phi_i=\sum_{|G+k|<G_{\text{cut}}} c_{i,k+G} \exp{\left(i(k+G)r\right)}
1047 %$\\
1048 %$\displaystyle
1049 %E_{\text{cut}}=\frac{\hbar^2}{2m}G^2_{\text{cut}}=\unit[300]{eV}
1050 %$
1051 \item Ultrasoft pseudopotential
1052 \item Exchange \& correlation: GGA
1053 \item Brillouin zone sampling: $\Gamma$-point
1054 \item Supercell: $N=216\pm2$
1055 \end{itemize}
1056 \end{minipage}
1057 \begin{minipage}{6cm}
1058 \begin{pspicture}(0,0)(0,0)
1059 \pscircle[fillcolor=yellow,fillstyle=solid,linestyle=none](3.5,-2.0){2.5}
1060 \rput(2.7,-0.7){\psframebox[fillstyle=solid,opacity=0.8,fillcolor=white]{
1061 $\displaystyle
1062 \left[ -\frac{\hbar^2}{2m}\nabla^2 + V_{\text{eff}}(r) - \epsilon_i \right] \Phi_i(r) = 0
1063 $
1064 }}
1065 \rput(5.2,-2.0){\psframebox[fillstyle=solid,opacity=0.8,fillcolor=white]{
1066 $\displaystyle
1067 n(r)=\sum_i^N|\Phi_i(r)|^2
1068 $
1069 }}
1070 \rput(3.0,-4.5){\psframebox[fillstyle=solid,opacity=0.8,fillcolor=white]{
1071 $\displaystyle
1072 V_{\text{eff}}(r)=V_{\text{ext}}(r)+\int\frac{e^2 n(r')}{|r-r'|}d^3r'
1073                  +V_{\text{XC}}[n(r)]
1074 $
1075 }}
1076 \psarcn[linewidth=0.07cm,linestyle=dashed]{->}(3.5,-2.0){2.5}{130}{15}
1077 \psarcn[linewidth=0.07cm,linestyle=dashed]{->}(3.5,-2.0){2.5}{230}{165}
1078 \psarcn[linewidth=0.07cm,linestyle=dashed]{->}(3.5,-2.0){2.5}{345}{310}
1079
1080 \end{pspicture}
1081 \end{minipage}
1082
1083 \end{slide}
1084
1085 \begin{slide}
1086
1087 \headphd
1088  {\large\bf
1089   Point defects \& defect migration
1090  }
1091
1092  \small
1093
1094  \vspace{0.2cm}
1095
1096 \begin{minipage}[b]{7.5cm}
1097 {\bf Defect structure}\\
1098   \begin{pspicture}(0,0)(7,4.4)
1099   \rput(3.5,3.2){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=hb]{
1100    \parbox{7cm}{
1101    \begin{itemize}
1102     \item Creation of c-Si simulation volume
1103     \item Periodic boundary conditions
1104     \item $T=0\text{ K}$, $p=0\text{ bar}$
1105    \end{itemize}
1106   }}}}
1107 \rput(3.5,1.3){\rnode{insert}{\psframebox{
1108  \parbox{7cm}{
1109   \begin{center}
1110   Insertion of interstitial C/Si atoms
1111   \end{center}
1112   }}}}
1113   \rput(3.5,0.2){\rnode{cool}{\psframebox[fillstyle=solid,fillcolor=lbb]{
1114    \parbox{7cm}{
1115    \begin{center}
1116    Relaxation / structural energy minimization
1117    \end{center}
1118   }}}}
1119   \ncline[]{->}{init}{insert}
1120   \ncline[]{->}{insert}{cool}
1121  \end{pspicture}
1122 \end{minipage}
1123 \begin{minipage}[b]{4.5cm}
1124 \begin{center}
1125 \includegraphics[width=3.8cm]{unit_cell_e.eps}\\
1126 \end{center}
1127 \begin{minipage}{2.21cm}
1128 {\scriptsize
1129 {\color{red}$\bullet$} Tetrahedral\\[-0.1cm]
1130 {\color{green}$\bullet$} Hexagonal\\[-0.1cm]
1131 {\color{yellow}$\bullet$} \hkl<1 0 0> DB
1132 }
1133 \end{minipage}
1134 \begin{minipage}{2.21cm}
1135 {\scriptsize
1136 {\color{magenta}$\bullet$} \hkl<1 1 0> DB\\[-0.1cm]
1137 {\color{cyan}$\bullet$} Bond-centered\\[-0.1cm]
1138 {\color{black}$\bullet$} Vac. / Sub.
1139 }
1140 \end{minipage}
1141 \end{minipage}
1142
1143 \vspace{0.2cm}
1144
1145 \begin{minipage}[b]{6cm}
1146 {\bf Defect formation energy}\\
1147 \framebox{
1148 $E_{\text{f}}=E-\sum_i N_i\mu_i$}\\[0.1cm]
1149 Particle reservoir: Si \& SiC\\[0.2cm]
1150 {\bf Binding energy}\\
1151 \framebox{
1152 $
1153 E_{\text{b}}=
1154 E_{\text{f}}^{\text{comb}}-
1155 E_{\text{f}}^{1^{\text{st}}}-
1156 E_{\text{f}}^{2^{\text{nd}}}
1157 $
1158 }\\[0.1cm]
1159 \footnotesize
1160 $E_{\text{b}}<0$: energetically favorable configuration\\
1161 $E_{\text{b}}\rightarrow 0$: non-interacting, isolated defects\\
1162 \end{minipage}
1163 \begin{minipage}[b]{6cm}
1164 {\bf Migration barrier}
1165 \footnotesize
1166 \begin{itemize}
1167  \item Displace diffusing atom
1168  \item Constrain relaxation of (diffusing) atoms
1169  \item Record configurational energy
1170 \end{itemize}
1171 \begin{picture}(0,0)(-60,-33)
1172 \includegraphics[width=4.5cm]{crt_mod.eps}
1173 \end{picture}
1174 \end{minipage}
1175
1176 \end{slide}
1177
1178 % continue here
1179 \fi
1180
1181 \begin{slide}
1182
1183  \footnotesize
1184
1185 \begin{minipage}{9.5cm}
1186
1187 \headphd
1188  {\large\bf
1189   Si self-interstitial point defects in silicon\\[0.1cm]
1190  }
1191
1192 \begin{tabular}{l c c c c c}
1193 \hline
1194  $E_{\text{f}}$ [eV] & \hkl<1 1 0> DB & H & T & \hkl<1 0 0> DB & V \\
1195 \hline
1196  \textsc{vasp} & \underline{3.39} & 3.42 & 3.77 & 4.41 & 3.63 \\
1197  Erhart/Albe & 4.39 & 4.48$^*$ & \underline{3.40} & 5.42 & 3.13 \\
1198 \hline
1199 \end{tabular}\\[0.3cm]
1200
1201 \begin{minipage}{4.7cm}
1202 \includegraphics[width=4.7cm]{e_kin_si_hex.ps}
1203 \end{minipage}
1204 \begin{minipage}{4.7cm}
1205 \begin{center}
1206 {\tiny nearly T $\rightarrow$ T}\\
1207 \end{center}
1208 \includegraphics[width=4.7cm]{nhex_tet.ps}
1209 \end{minipage}\\[0.1cm]
1210
1211 \underline{Hexagonal} \hspace{2pt}
1212 \href{../video/si_self_int_hexa.avi}{$\rhd$}\\[0.1cm]
1213 \framebox{
1214 \begin{minipage}{2.7cm}
1215 $E_{\text{f}}^*=4.48\text{ eV}$\\
1216 \includegraphics[width=2.7cm]{si_pd_albe/hex_a.eps}
1217 \end{minipage}
1218 \begin{minipage}{0.4cm}
1219 \begin{center}
1220 $\Rightarrow$
1221 \end{center}
1222 \end{minipage}
1223 \begin{minipage}{2.7cm}
1224 $E_{\text{f}}=3.96\text{ eV}$\\
1225 \includegraphics[width=2.8cm]{si_pd_albe/hex.eps}
1226 \end{minipage}
1227 }
1228 \begin{minipage}{2.9cm}
1229 \begin{flushright}
1230 \underline{Vacancy}\\
1231 \includegraphics[width=3.0cm]{si_pd_albe/vac.eps}
1232 \end{flushright}
1233 \end{minipage}
1234
1235 \end{minipage}
1236 \begin{minipage}{2.5cm}
1237
1238 \begin{flushright}
1239 \vspace*{0.2cm}
1240 \underline{\hkl<1 1 0> dumbbell}\\
1241 \includegraphics[width=3.0cm]{si_pd_albe/110.eps}\\
1242 \underline{Tetrahedral}\\
1243 \includegraphics[width=3.0cm]{si_pd_albe/tet.eps}\\
1244 \underline{\hkl<1 0 0> dumbbell}\\
1245 \includegraphics[width=3.0cm]{si_pd_albe/100.eps}
1246 \end{flushright}
1247
1248 \end{minipage}
1249
1250 \end{slide}
1251
1252 \begin{slide}
1253
1254 \footnotesize
1255
1256 \headphd
1257  {\large\bf
1258   C interstitial point defects in silicon\\[-0.1cm]
1259  }
1260
1261 {\scriptsize
1262 \begin{tabular}{l c c c c c c r}
1263 \hline
1264  $E_{\text{f}}$ & T & H & \hkl<1 0 0> DB & \hkl<1 1 0> DB & S & B & \cs{} \& \si\\
1265 \hline
1266  \textsc{vasp} & unstable & unstable & \underline{3.72} & 4.16 & 1.95 & 4.66 & {\color{green}4.17}\\
1267  Erhart/Albe MD & 6.09 & 9.05$^*$ & \underline{3.88} & 5.18 & {\color{red}0.75} & 5.59$^*$ & {\color{green}4.43} \\
1268 \hline
1269 \end{tabular}
1270 }\\[0.1cm]
1271
1272 \framebox{
1273 \begin{minipage}{2.7cm}
1274 \underline{Hexagonal} \hspace{2pt}
1275 \href{../video/c_in_si_int_hexa.avi}{$\rhd$}\\
1276 $E_{\text{f}}^*=9.05\text{ eV}$\\
1277 \includegraphics[width=2.7cm]{c_pd_albe/hex.eps}
1278 \end{minipage}
1279 \begin{minipage}{0.4cm}
1280 \begin{center}
1281 $\Rightarrow$
1282 \end{center}
1283 \end{minipage}
1284 \begin{minipage}{2.7cm}
1285 \underline{\hkl<1 0 0>}\\
1286 $E_{\text{f}}=3.88\text{ eV}$\\
1287 \includegraphics[width=2.7cm]{c_pd_albe/100.eps}
1288 \end{minipage}
1289 }
1290 \begin{minipage}{2cm}
1291 \hfill
1292 \end{minipage}
1293 \begin{minipage}{3cm}
1294 \begin{flushright}
1295 \underline{Tetrahedral}\\
1296 \includegraphics[width=3.0cm]{c_pd_albe/tet.eps}
1297 \end{flushright}
1298 \end{minipage}
1299
1300 \framebox{
1301 \begin{minipage}{2.7cm}
1302 \underline{Bond-centered}\\
1303 $E_{\text{f}}^*=5.59\text{ eV}$\\
1304 \includegraphics[width=2.7cm]{c_pd_albe/bc.eps}
1305 \end{minipage}
1306 \begin{minipage}{0.4cm}
1307 \begin{center}
1308 $\Rightarrow$
1309 \end{center}
1310 \end{minipage}
1311 \begin{minipage}{2.7cm}
1312 \underline{\hkl<1 1 0> dumbbell}\\
1313 $E_{\text{f}}=5.18\text{ eV}$\\
1314 \includegraphics[width=2.7cm]{c_pd_albe/110.eps}
1315 \end{minipage}
1316 }
1317 \begin{minipage}{2cm}
1318 \hfill
1319 \end{minipage}
1320 \begin{minipage}{3cm}
1321 \begin{flushright}
1322 \underline{Substitutional}\\
1323 \includegraphics[width=3.0cm]{c_pd_albe/sub.eps}
1324 \end{flushright}
1325 \end{minipage}
1326
1327 \end{slide}
1328
1329 \end{document}
1330 \ifnum1=0
1331
1332 \begin{slide}
1333
1334 \footnotesize
1335
1336  {\large\bf\boldmath
1337   C \hkl<1 0 0> dumbbell interstitial configuration\\
1338  }
1339
1340 {\tiny
1341 \begin{tabular}{l c c c c c c c c}
1342 \hline
1343  Distances [nm] & $r(1C)$ & $r(2C)$ & $r(3C)$ & $r(12)$ & $r(13)$ & $r(34)$ & $r(23)$ & $r(25)$ \\
1344 \hline
1345 Erhart/Albe & 0.175 & 0.329 & 0.186 & 0.226 & 0.300 & 0.343 & 0.423 & 0.425 \\
1346 VASP & 0.174 & 0.341 & 0.182 & 0.229 & 0.286 & 0.347 & 0.422 & 0.417 \\
1347 \hline
1348 \end{tabular}\\[0.2cm]
1349 \begin{tabular}{l c c c c }
1350 \hline
1351  Angles [$^{\circ}$] & $\theta_1$ & $\theta_2$ & $\theta_3$ & $\theta_4$ \\
1352 \hline
1353 Erhart/Albe & 140.2 & 109.9 & 134.4 & 112.8 \\
1354 VASP & 130.7 & 114.4 & 146.0 & 107.0 \\
1355 \hline
1356 \end{tabular}\\[0.2cm]
1357 \begin{tabular}{l c c c}
1358 \hline
1359  Displacements [nm]& $a$ & $b$ & $|a|+|b|$ \\
1360 \hline
1361 Erhart/Albe & 0.084 & -0.091 & 0.175 \\
1362 VASP & 0.109 & -0.065 & 0.174 \\
1363 \hline
1364 \end{tabular}\\[0.6cm]
1365 }
1366
1367 \begin{minipage}{3.0cm}
1368 \begin{center}
1369 \underline{Erhart/Albe}
1370 \includegraphics[width=3.0cm]{c_pd_albe/100_cmp.eps}
1371 \end{center}
1372 \end{minipage}
1373 \begin{minipage}{3.0cm}
1374 \begin{center}
1375 \underline{VASP}
1376 \includegraphics[width=3.0cm]{c_pd_vasp/100_cmp.eps}
1377 \end{center}
1378 \end{minipage}\\
1379
1380 \begin{picture}(0,0)(-185,10)
1381 \includegraphics[width=6.8cm]{100-c-si-db_cmp.eps}
1382 \end{picture}
1383 \begin{picture}(0,0)(-280,-150)
1384 \includegraphics[width=3.3cm]{c_pd_vasp/eden.eps}
1385 \end{picture}
1386
1387 \begin{pspicture}(0,0)(0,0)
1388 \psellipse[linecolor=green](5.18,5.92)(0.5,0.3)
1389 \psellipse[linecolor=red](3.45,5.92)(1.0,0.4)
1390 \psellipse[linecolor=blue](2.7,6.92)(0.9,0.2)
1391 \psellipse[linecolor=blue](4.65,6.92)(0.9,0.2)
1392 \end{pspicture}
1393
1394 \end{slide}
1395
1396 \begin{slide}
1397
1398 \small
1399
1400 \begin{minipage}{8.5cm}
1401
1402  {\large\bf
1403   Bond-centered interstitial configuration\\[-0.1cm]
1404  }
1405
1406 \begin{minipage}{3.0cm}
1407 \includegraphics[width=2.8cm]{c_pd_vasp/bc_2333.eps}\\
1408 \end{minipage}
1409 \begin{minipage}{5.2cm}
1410 \begin{itemize}
1411  \item Linear Si-C-Si bond
1412  \item Si: one C \& 3 Si neighbours
1413  \item Spin polarized calculations
1414  \item No saddle point!\\
1415        Real local minimum!
1416 \end{itemize}
1417 \end{minipage}
1418
1419 \framebox{
1420  \tiny
1421  \begin{minipage}[t]{6.5cm}
1422   \begin{minipage}[t]{1.2cm}
1423   {\color{red}Si}\\
1424   {\tiny sp$^3$}\\[0.8cm]
1425   \underline{${\color{black}\uparrow}$}
1426   \underline{${\color{black}\uparrow}$}
1427   \underline{${\color{black}\uparrow}$}
1428   \underline{${\color{red}\uparrow}$}\\
1429   sp$^3$
1430   \end{minipage}
1431   \begin{minipage}[t]{1.4cm}
1432   \begin{center}
1433   {\color{red}M}{\color{blue}O}\\[0.8cm]
1434   \underline{${\color{blue}\uparrow}{\color{white}\downarrow}$}\\
1435   $\sigma_{\text{ab}}$\\[0.5cm]
1436   \underline{${\color{red}\uparrow}{\color{blue}\downarrow}$}\\
1437   $\sigma_{\text{b}}$
1438   \end{center}
1439   \end{minipage}
1440   \begin{minipage}[t]{1.0cm}
1441   \begin{center}
1442   {\color{blue}C}\\
1443   {\tiny sp}\\[0.2cm]
1444   \underline{${\color{white}\uparrow\uparrow}$}
1445   \underline{${\color{white}\uparrow\uparrow}$}\\
1446   2p\\[0.4cm]
1447   \underline{${\color{blue}\uparrow}{\color{blue}\downarrow}$}
1448   \underline{${\color{blue}\uparrow}{\color{blue}\downarrow}$}\\
1449   sp
1450   \end{center}
1451   \end{minipage}
1452   \begin{minipage}[t]{1.4cm}
1453   \begin{center}
1454   {\color{blue}M}{\color{green}O}\\[0.8cm]
1455   \underline{${\color{blue}\uparrow}{\color{white}\downarrow}$}\\
1456   $\sigma_{\text{ab}}$\\[0.5cm]
1457   \underline{${\color{green}\uparrow}{\color{blue}\downarrow}$}\\
1458   $\sigma_{\text{b}}$
1459   \end{center}
1460   \end{minipage}
1461   \begin{minipage}[t]{1.2cm}
1462   \begin{flushright}
1463   {\color{green}Si}\\
1464   {\tiny sp$^3$}\\[0.8cm]
1465   \underline{${\color{green}\uparrow}$}
1466   \underline{${\color{black}\uparrow}$}
1467   \underline{${\color{black}\uparrow}$}
1468   \underline{${\color{black}\uparrow}$}\\
1469   sp$^3$
1470   \end{flushright}
1471   \end{minipage}
1472  \end{minipage}
1473 }\\[0.1cm]
1474
1475 \framebox{
1476 \begin{minipage}{4.5cm}
1477 \includegraphics[width=4cm]{c_100_mig_vasp/im_spin_diff.eps}
1478 \end{minipage}
1479 \begin{minipage}{3.5cm}
1480 {\color{gray}$\bullet$} Spin up\\
1481 {\color{green}$\bullet$} Spin down\\
1482 {\color{blue}$\bullet$} Resulting spin up\\
1483 {\color{yellow}$\bullet$} Si atoms\\
1484 {\color{red}$\bullet$} C atom
1485 \end{minipage}
1486 }
1487
1488 \end{minipage}
1489 \begin{minipage}{4.2cm}
1490 \begin{flushright}
1491 \includegraphics[width=4.3cm]{c_pd_vasp/bc_2333_ksl.ps}\\
1492 {\color{green}$\Box$} {\tiny unoccupied}\\
1493 {\color{red}$\bullet$} {\tiny occupied}
1494 \end{flushright}
1495 \end{minipage}
1496
1497 \end{slide}
1498
1499 \begin{slide}
1500
1501  {\large\bf\boldmath
1502   Migration of the C \hkl<1 0 0> dumbbell interstitial
1503  }
1504
1505 \scriptsize
1506
1507  {\small Investigated pathways}
1508
1509 \begin{minipage}{8.5cm}
1510 \begin{minipage}{8.3cm}
1511 \underline{\hkl<0 0 -1> $\rightarrow$ \hkl<0 0 1>}\\
1512 \begin{minipage}{2.4cm}
1513 \includegraphics[width=2.4cm]{c_pd_vasp/100_2333.eps}
1514 \end{minipage}
1515 \begin{minipage}{0.4cm}
1516 $\rightarrow$
1517 \end{minipage}
1518 \begin{minipage}{2.4cm}
1519 \includegraphics[width=2.4cm]{c_pd_vasp/bc_2333.eps}
1520 \end{minipage}
1521 \begin{minipage}{0.4cm}
1522 $\rightarrow$
1523 \end{minipage}
1524 \begin{minipage}{2.4cm}
1525 \includegraphics[width=2.4cm]{c_pd_vasp/100_next_2333.eps}
1526 \end{minipage}
1527 \end{minipage}\\
1528 \begin{minipage}{8.3cm}
1529 \underline{\hkl<0 0 -1> $\rightarrow$ \hkl<0 -1 0>}\\
1530 \begin{minipage}{2.4cm}
1531 \includegraphics[width=2.4cm]{c_pd_vasp/100_2333.eps}
1532 \end{minipage}
1533 \begin{minipage}{0.4cm}
1534 $\rightarrow$
1535 \end{minipage}
1536 \begin{minipage}{2.4cm}
1537 \includegraphics[width=2.4cm]{c_pd_vasp/00-1-0-10_2333.eps}
1538 \end{minipage}
1539 \begin{minipage}{0.4cm}
1540 $\rightarrow$
1541 \end{minipage}
1542 \begin{minipage}{2.4cm}
1543 \includegraphics[width=2.4cm]{c_pd_vasp/0-10_2333.eps}
1544 \end{minipage}
1545 \end{minipage}\\
1546 \begin{minipage}{8.3cm}
1547 \underline{\hkl<0 0 -1> $\rightarrow$ \hkl<0 -1 0> (in place)}\\
1548 \begin{minipage}{2.4cm}
1549 \includegraphics[width=2.4cm]{c_pd_vasp/100_2333.eps}
1550 \end{minipage}
1551 \begin{minipage}{0.4cm}
1552 $\rightarrow$
1553 \end{minipage}
1554 \begin{minipage}{2.4cm}
1555 \includegraphics[width=2.4cm]{c_pd_vasp/00-1_ip0-10_2333.eps}
1556 \end{minipage}
1557 \begin{minipage}{0.4cm}
1558 $\rightarrow$
1559 \end{minipage}
1560 \begin{minipage}{2.4cm}
1561 \includegraphics[width=2.4cm]{c_pd_vasp/0-10_ip_2333.eps}
1562 \end{minipage}
1563 \end{minipage}
1564 \end{minipage}
1565
1566 \end{slide}
1567
1568 \begin{slide}
1569
1570  {\large\bf\boldmath
1571   Migration of the C \hkl<1 0 0> dumbbell interstitial
1572  }
1573
1574 \scriptsize
1575
1576 \framebox{
1577 \begin{minipage}{5.9cm}
1578 \begin{flushleft}
1579 \includegraphics[width=5.8cm]{im_00-1_nosym_sp_fullct_thesis.ps}\\[0.45cm]
1580 \end{flushleft}
1581 \begin{center}
1582 \begin{picture}(0,0)(60,0)
1583 \includegraphics[width=1cm]{vasp_mig/00-1.eps}
1584 \end{picture}
1585 \begin{picture}(0,0)(-5,0)
1586 \includegraphics[width=1cm]{vasp_mig/bc_00-1_sp.eps}
1587 \end{picture}
1588 \begin{picture}(0,0)(-55,0)
1589 \includegraphics[width=1cm]{vasp_mig/bc.eps}
1590 \end{picture}
1591 \begin{picture}(0,0)(12.5,10)
1592 \includegraphics[width=1cm]{110_arrow.eps}
1593 \end{picture}
1594 \begin{picture}(0,0)(90,0)
1595 \includegraphics[height=0.9cm]{001_arrow.eps}
1596 \end{picture}
1597 \end{center}
1598 \vspace*{0.35cm}
1599 \end{minipage}
1600 }
1601 \begin{minipage}{0.3cm}
1602 \hfill
1603 \end{minipage}
1604 \framebox{
1605 \begin{minipage}{5.9cm}
1606 \begin{flushright}
1607 \includegraphics[width=5.9cm]{vasp_mig/00-1_0-10_nosym_sp_fullct.ps}\\[0.5cm]
1608 \end{flushright}
1609 \begin{center}
1610 \begin{picture}(0,0)(60,0)
1611 \includegraphics[width=1cm]{vasp_mig/00-1_a.eps}
1612 \end{picture}
1613 \begin{picture}(0,0)(5,0)
1614 \includegraphics[width=1cm]{vasp_mig/00-1_0-10_sp.eps}
1615 \end{picture}
1616 \begin{picture}(0,0)(-55,0)
1617 \includegraphics[width=1cm]{vasp_mig/0-10.eps}
1618 \end{picture}
1619 \begin{picture}(0,0)(12.5,10)
1620 \includegraphics[width=1cm]{100_arrow.eps}
1621 \end{picture}
1622 \begin{picture}(0,0)(90,0)
1623 \includegraphics[height=0.9cm]{001_arrow.eps}
1624 \end{picture}
1625 \end{center}
1626 \vspace*{0.3cm}
1627 \end{minipage}\\
1628 }
1629
1630 \vspace*{0.05cm}
1631
1632 \framebox{
1633 \begin{minipage}{5.9cm}
1634 \begin{flushleft}
1635 \includegraphics[width=5.9cm]{vasp_mig/00-1_ip0-10_nosym_sp_fullct.ps}\\[0.6cm]
1636 \end{flushleft}
1637 \begin{center}
1638 \begin{picture}(0,0)(60,0)
1639 \includegraphics[width=0.9cm]{vasp_mig/00-1_b.eps}
1640 \end{picture}
1641 \begin{picture}(0,0)(10,0)
1642 \includegraphics[width=0.9cm]{vasp_mig/00-1_ip0-10_sp.eps}
1643 \end{picture}
1644 \begin{picture}(0,0)(-60,0)
1645 \includegraphics[width=0.9cm]{vasp_mig/0-10_b.eps}
1646 \end{picture}
1647 \begin{picture}(0,0)(12.5,10)
1648 \includegraphics[width=1cm]{100_arrow.eps}
1649 \end{picture}
1650 \begin{picture}(0,0)(90,0)
1651 \includegraphics[height=0.9cm]{001_arrow.eps}
1652 \end{picture}
1653 \end{center}
1654 \vspace*{0.3cm}
1655 \end{minipage}
1656 }
1657 \begin{minipage}{0.3cm}
1658 \hfill
1659 \end{minipage}
1660 \begin{minipage}{6.5cm}
1661 VASP results
1662 \begin{itemize}
1663  \item Energetically most favorable path
1664        \begin{itemize}
1665         \item Path 2
1666         \item Activation energy: $\approx$ 0.9 eV 
1667         \item Experimental values: 0.73 ... 0.87 eV
1668        \end{itemize}
1669        $\Rightarrow$ {\color{blue}Diffusion} path identified!
1670  \item Reorientation (path 3)
1671        \begin{itemize}
1672         \item More likely composed of two consecutive steps of type 2
1673         \item Experimental values: 0.77 ... 0.88 eV
1674        \end{itemize}
1675        $\Rightarrow$ {\color{blue}Reorientation} transition identified!
1676 \end{itemize}
1677 \end{minipage}
1678
1679 \end{slide}
1680
1681 \begin{slide}
1682
1683  {\large\bf\boldmath
1684   Migration of the C \hkl<1 0 0> dumbbell interstitial
1685  }
1686
1687 \scriptsize
1688
1689  \vspace{0.1cm}
1690
1691 \begin{minipage}{6.5cm}
1692
1693 \framebox{
1694 \begin{minipage}[t]{5.9cm}
1695 \begin{flushleft}
1696 \includegraphics[width=5.9cm]{bc_00-1.ps}\\[2.35cm]
1697 \end{flushleft}
1698 \begin{center}
1699 \begin{pspicture}(0,0)(0,0)
1700 \psframe[linecolor=red,fillstyle=none](-2.8,1.35)(3.3,2.7)
1701 \end{pspicture}
1702 \begin{picture}(0,0)(60,-50)
1703 \includegraphics[width=1cm]{albe_mig/bc_00-1_red_00.eps}
1704 \end{picture}
1705 \begin{picture}(0,0)(5,-50)
1706 \includegraphics[width=1cm]{albe_mig/bc_00-1_red_01.eps}
1707 \end{picture}
1708 \begin{picture}(0,0)(-55,-50)
1709 \includegraphics[width=1cm]{albe_mig/bc_00-1_red_02.eps}
1710 \end{picture}
1711 \begin{picture}(0,0)(12.5,-40)
1712 \includegraphics[width=1cm]{110_arrow.eps}
1713 \end{picture}
1714 \begin{picture}(0,0)(90,-45)
1715 \includegraphics[height=0.9cm]{001_arrow.eps}
1716 \end{picture}\\
1717 \begin{pspicture}(0,0)(0,0)
1718 \psframe[linecolor=blue,fillstyle=none](-2.8,0)(3.3,1.6)
1719 \end{pspicture}
1720 \begin{picture}(0,0)(60,-15)
1721 \includegraphics[width=0.9cm]{albe_mig/bc_00-1_01.eps}
1722 \end{picture}
1723 \begin{picture}(0,0)(35,-15)
1724 \includegraphics[width=0.9cm]{albe_mig/bc_00-1_02.eps}
1725 \end{picture}
1726 \begin{picture}(0,0)(-5,-15)
1727 \includegraphics[width=0.9cm]{albe_mig/bc_00-1_03.eps}
1728 \end{picture}
1729 \begin{picture}(0,0)(-55,-15)
1730 \includegraphics[width=0.9cm]{albe_mig/bc_00-1_04.eps}
1731 \end{picture}
1732 \begin{picture}(0,0)(12.5,-5)
1733 \includegraphics[width=1cm]{100_arrow.eps}
1734 \end{picture}
1735 \begin{picture}(0,0)(90,-15)
1736 \includegraphics[height=0.9cm]{010_arrow.eps}
1737 \end{picture}
1738 \end{center}
1739 \end{minipage}
1740 }\\[0.1cm]
1741
1742 \begin{minipage}{5.9cm}
1743 Erhart/Albe results
1744 \begin{itemize}
1745  \item Lowest activation energy: $\approx$ 2.2 eV
1746  \item 2.4 times higher than VASP
1747  \item Different pathway
1748 \end{itemize}
1749 \end{minipage}
1750
1751 \end{minipage}
1752 \begin{minipage}{6.5cm}
1753
1754 \framebox{
1755 \begin{minipage}{5.9cm}
1756 %\begin{flushright}
1757 %\includegraphics[width=5.9cm]{00-1_0-10.ps}\\[0.75cm]
1758 %\end{flushright}
1759 %\begin{center}
1760 %\begin{pspicture}(0,0)(0,0)
1761 %\psframe[linecolor=red,fillstyle=none](-2.8,-0.25)(3.3,1.1)
1762 %\end{pspicture}
1763 %\begin{picture}(0,0)(60,-5)
1764 %\includegraphics[width=0.9cm]{albe_mig/00-1_0-10_red_00.eps}
1765 %\end{picture}
1766 %\begin{picture}(0,0)(0,-5)
1767 %\includegraphics[width=0.9cm]{albe_mig/00-1_0-10_red_min.eps}
1768 %\end{picture}
1769 %\begin{picture}(0,0)(-55,-5)
1770 %\includegraphics[width=0.9cm]{albe_mig/00-1_0-10_red_03.eps}
1771 %\end{picture}
1772 %\begin{picture}(0,0)(12.5,5)
1773 %\includegraphics[width=1cm]{100_arrow.eps}
1774 %\end{picture}
1775 %\begin{picture}(0,0)(90,0)
1776 %\includegraphics[height=0.9cm]{001_arrow.eps}
1777 %\end{picture}
1778 %\end{center}
1779 %\vspace{0.2cm}
1780 %\end{minipage}
1781 %}\\[0.2cm]
1782 %
1783 %\framebox{
1784 %\begin{minipage}{5.9cm}
1785 \includegraphics[width=5.9cm]{00-1_110_0-10_mig_albe.ps}
1786 \end{minipage}
1787 }\\[0.1cm]
1788
1789 \begin{minipage}{5.9cm}
1790 Transition involving \ci{} \hkl<1 1 0>
1791 \begin{itemize}
1792  \item Bond-centered configuration unstable\\
1793        $\rightarrow$ \ci{} \hkl<1 1 0> dumbbell
1794  \item Transition minima of path 2 \& 3\\
1795        $\rightarrow$ \ci{} \hkl<1 1 0> dumbbell
1796  \item Activation energy: $\approx$ 2.2 eV \& 0.9 eV
1797  \item 2.4 - 3.4 times higher than VASP
1798  \item Rotation of dumbbell orientation
1799 \end{itemize}
1800 \vspace{0.1cm}
1801 \begin{center}
1802 {\color{blue}Overestimated diffusion barrier}
1803 \end{center}
1804 \end{minipage}
1805
1806 \end{minipage}
1807
1808 \end{slide}
1809
1810 \begin{slide}
1811
1812  {\large\bf\boldmath
1813   Combinations with a C-Si \hkl<1 0 0>-type interstitial
1814  }
1815
1816 \small
1817
1818 \vspace*{0.1cm}
1819
1820 Binding energy: 
1821 $
1822 E_{\text{b}}=
1823 E_{\text{f}}^{\text{defect combination}}-
1824 E_{\text{f}}^{\text{C \hkl<0 0 -1> dumbbell}}-
1825 E_{\text{f}}^{\text{2nd defect}}
1826 $
1827
1828 \vspace*{0.1cm}
1829
1830 {\scriptsize
1831 \begin{tabular}{l c c c c c c}
1832 \hline
1833  $E_{\text{b}}$ [eV] & 1 & 2 & 3 & 4 & 5 & R\\
1834  \hline
1835  \hkl<0 0 -1> & {\color{red}-0.08} & -1.15 & {\color{red}-0.08} & 0.04 & -1.66 & -0.19\\
1836  \hkl<0 0 1> & 0.34 & 0.004 & -2.05 & 0.26 & -1.53 & -0.19\\
1837  \hkl<0 -1 0> & {\color{orange}-2.39} & -0.17 & {\color{green}-0.10} & {\color{blue}-0.27} & {\color{magenta}-1.88} & {\color{gray}-0.05}\\
1838  \hkl<0 1 0> & {\color{cyan}-2.25} & -1.90 & {\color{cyan}-2.25} & {\color{purple}-0.12} & {\color{violet}-1.38} & {\color{yellow}-0.06}\\
1839  \hkl<-1 0 0> & {\color{orange}-2.39} & -0.36 & {\color{cyan}-2.25} & {\color{purple}-0.12} & {\color{magenta}-1.88} & {\color{gray}-0.05}\\
1840  \hkl<1 0 0> & {\color{cyan}-2.25} & -2.16 & {\color{green}-0.10} & {\color{blue}-0.27} & {\color{violet}-1.38} & {\color{yellow}-0.06}\\
1841  \hline
1842  C substitutional (C$_{\text{S}}$) & 0.26 & -0.51 & -0.93 & -0.15 & 0.49 & -0.05\\
1843  Vacancy & -5.39 ($\rightarrow$ C$_{\text{S}}$) & -0.59 & -3.14 & -0.54 & -0.50 & -0.31\\
1844 \hline
1845 \end{tabular}
1846 }
1847
1848 \vspace*{0.3cm}
1849
1850 \footnotesize
1851
1852 \begin{minipage}[t]{3.8cm}
1853 \underline{\hkl<1 0 0> at position 1}\\[0.1cm]
1854 \includegraphics[width=3.5cm]{00-1dc/2-25.eps}
1855 \end{minipage}
1856 \begin{minipage}[t]{3.5cm}
1857 \underline{\hkl<0 -1 0> at position 1}\\[0.1cm]
1858 \includegraphics[width=3.2cm]{00-1dc/2-39.eps}
1859 \end{minipage}
1860 \begin{minipage}[t]{5.5cm}
1861 \begin{itemize}
1862  \item $E_{\text{b}}=0$ $\Leftrightarrow$ non-interacting defects\\
1863        $E_{\text{b}} \rightarrow 0$ for increasing distance (R)
1864  \item Stress compensation / increase
1865  \item Unfavored: antiparallel orientations
1866  \item Indication of energetically favored\\
1867        agglomeration
1868  \item Most favorable: C clustering
1869  \item However: High barrier ($>4\,\text{eV}$)
1870  \item $4\times{\color{cyan}-2.25}$ versus $2\times{\color{orange}-2.39}$
1871        (Entropy)
1872 \end{itemize}
1873 \end{minipage}
1874
1875 \begin{picture}(0,0)(-295,-130)
1876 \includegraphics[width=3.5cm]{comb_pos.eps}
1877 \end{picture}
1878
1879 \end{slide}
1880
1881 \begin{slide}
1882
1883  {\large\bf\boldmath
1884   Combinations of C-Si \hkl<1 0 0>-type interstitials
1885  }
1886
1887 \small
1888
1889 \vspace*{0.1cm}
1890
1891 Energetically most favorable combinations along \hkl<1 1 0>
1892
1893 \vspace*{0.1cm}
1894
1895 {\scriptsize
1896 \begin{tabular}{l c c c c c c}
1897 \hline
1898  & 1 & 2 & 3 & 4 & 5 & 6\\
1899 \hline
1900 $E_{\text{b}}$ [eV] & -2.39 & -1.88 & -0.59 & -0.31 & -0.24 & -0.21 \\
1901 C-C distance [\AA] & 1.4 & 4.6 & 6.5 & 8.6 & 10.5 & 10.8 \\
1902 Type & \hkl<-1 0 0> & \hkl<1 0 0> & \hkl<1 0 0> & \hkl<1 0 0> & \hkl<1 0 0> & \hkl<1 0 0>, \hkl<0 -1 0>\\
1903 \hline
1904 \end{tabular}
1905 }
1906
1907 \vspace*{0.3cm}
1908
1909 \begin{minipage}{7.0cm}
1910 \includegraphics[width=7cm]{db_along_110_cc.ps}
1911 \end{minipage}
1912 \begin{minipage}{6.0cm}
1913 \begin{itemize}
1914  \item Interaction proportional to reciprocal cube of C-C distance
1915  \item Saturation in the immediate vicinity
1916  \renewcommand\labelitemi{$\Rightarrow$}
1917  \item Agglomeration of \ci{} expected
1918  \item Absence of C clustering
1919 \end{itemize}
1920 \begin{center}
1921 {\color{blue}
1922  Consisten with initial precipitation model
1923 }
1924 \end{center}
1925 \end{minipage}
1926
1927 \vspace{0.2cm}
1928
1929 \end{slide}
1930
1931 \begin{slide}
1932
1933  {\large\bf\boldmath
1934   Combinations of substitutional C and \hkl<1 1 0> Si self-interstitials
1935  }
1936
1937  \scriptsize
1938
1939 %\begin{center}
1940 %\begin{minipage}{3.2cm}
1941 %\includegraphics[width=3cm]{sub_110_combo.eps}
1942 %\end{minipage}
1943 %\begin{minipage}{7.8cm}
1944 %\begin{tabular}{l c c c c c c}
1945 %\hline
1946 %C$_{\text{sub}}$ & \hkl<1 1 0> & \hkl<-1 1 0> & \hkl<0 1 1> & \hkl<0 -1 1> &
1947 %                   \hkl<1 0 1> & \hkl<-1 0 1> \\
1948 %\hline
1949 %1 & \RM{1} & \RM{3} & \RM{3} & \RM{1} & \RM{3} & \RM{1} \\
1950 %2 & \RM{2} & A & A & \RM{2} & C & \RM{5} \\
1951 %3 & \RM{3} & \RM{1} & \RM{3} & \RM{1} & \RM{1} & \RM{3} \\
1952 %4 & \RM{4} & B & D & E & E & D \\
1953 %5 & \RM{5} & C & A & \RM{2} & A & \RM{2} \\
1954 %\hline
1955 %\end{tabular}
1956 %\end{minipage}
1957 %\end{center}
1958
1959 %\begin{center}
1960 %\begin{tabular}{l c c c c c c c c c c}
1961 %\hline
1962 %Conf & \RM{1} & \RM{2} & \RM{3} & \RM{4} & \RM{5} & A & B & C & D & E \\
1963 %\hline
1964 %$E_{\text{f}}$ [eV]& 4.37 & 5.26 & 5.57 & 5.37 & 5.12 & 5.10 & 5.32 & 5.28 & 5.39 & 5.32 \\
1965 %$E_{\text{b}}$ [eV] & -0.97 & -0.08 & 0.22 & -0.02 & -0.23 & -0.25 & -0.02 & -0.06 & 0.05 & -0.03 \\
1966 %$r$ [nm] & 0.292 & 0.394 & 0.241 & 0.453 & 0.407 & 0.408 & 0.452 & 0.392 & 0.456 & 0.453\\
1967 %\hline
1968 %\end{tabular}
1969 %\end{center}
1970
1971 \begin{minipage}{6.0cm}
1972 \includegraphics[width=5.8cm]{c_sub_si110.ps}
1973 \end{minipage}
1974 \begin{minipage}{7cm}
1975 \scriptsize
1976 \begin{itemize}
1977  \item IBS: C may displace Si\\
1978        $\Rightarrow$ C$_{\text{sub}}$ + \hkl<1 1 0> Si self-interstitial
1979  \item Assumption:\\
1980        \hkl<1 1 0>-type $\rightarrow$ favored combination
1981  \renewcommand\labelitemi{$\Rightarrow$}
1982  \item Most favorable: \cs{} along \hkl<1 1 0> chain \si{}
1983  \item Less favorable than C-Si \hkl<1 0 0> dumbbell
1984  \item Interaction drops quickly to zero\\
1985        $\rightarrow$ low capture radius
1986 \end{itemize}
1987 \begin{center}
1988  {\color{blue}
1989  IBS process far from equilibrium\\
1990  \cs{} \& \si{} instead of thermodynamic ground state
1991  }
1992 \end{center}
1993 \end{minipage}
1994
1995 \begin{minipage}{6.5cm}
1996 \includegraphics[width=6.0cm]{162-097.ps}
1997 \begin{itemize}
1998  \item Low migration barrier
1999 \end{itemize}
2000 \end{minipage}
2001 \begin{minipage}{6.5cm}
2002 \begin{center}
2003 Ab initio MD at \degc{900}\\
2004 \includegraphics[width=3.3cm]{md_vasp_01.eps}
2005 $t=\unit[2230]{fs}$\\
2006 \includegraphics[width=3.3cm]{md_vasp_02.eps}
2007 $t=\unit[2900]{fs}$
2008 \end{center}
2009 {\color{blue}
2010 Contribution of entropy to structural formation
2011 }
2012 \end{minipage}
2013
2014 \end{slide}
2015
2016 \begin{slide}
2017
2018  {\large\bf\boldmath
2019   Migration in C-Si \hkl<1 0 0> and vacancy combinations
2020  }
2021
2022  \footnotesize
2023
2024 \vspace{0.1cm}
2025
2026 \begin{minipage}[t]{3cm}
2027 \underline{Pos 2, $E_{\text{b}}=-0.59\text{ eV}$}\\
2028 \includegraphics[width=2.8cm]{00-1dc/0-59.eps}
2029 \end{minipage}
2030 \begin{minipage}[t]{7cm}
2031 \vspace{0.2cm}
2032 \begin{center}
2033  Low activation energies\\
2034  High activation energies for reverse processes\\
2035  $\Downarrow$\\
2036  {\color{blue}C$_{\text{sub}}$ very stable}\\
2037 \vspace*{0.1cm}
2038  \hrule
2039 \vspace*{0.1cm}
2040  Without nearby \hkl<1 1 0> Si self-interstitial (IBS)\\
2041  $\Downarrow$\\
2042  {\color{blue}Formation of SiC by successive substitution by C}
2043
2044 \end{center}
2045 \end{minipage}
2046 \begin{minipage}[t]{3cm}
2047 \underline{Pos 3, $E_{\text{b}}=-3.14\text{ eV}$}\\
2048 \includegraphics[width=2.8cm]{00-1dc/3-14.eps}
2049 \end{minipage}
2050
2051
2052 \framebox{
2053 \begin{minipage}{5.9cm}
2054 \includegraphics[width=5.9cm]{vasp_mig/comb_mig_3-2_vac_fullct.ps}\\[0.6cm]
2055 \begin{center}
2056 \begin{picture}(0,0)(70,0)
2057 \includegraphics[width=1.4cm]{vasp_mig/comb_2-1_init.eps}
2058 \end{picture}
2059 \begin{picture}(0,0)(30,0)
2060 \includegraphics[width=1.4cm]{vasp_mig/comb_2-1_seq_03.eps}
2061 \end{picture}
2062 \begin{picture}(0,0)(-10,0)
2063 \includegraphics[width=1.4cm]{vasp_mig/comb_2-1_seq_06.eps}
2064 \end{picture}
2065 \begin{picture}(0,0)(-48,0)
2066 \includegraphics[width=1.4cm]{vasp_mig/comb_2-1_final.eps}
2067 \end{picture}
2068 \begin{picture}(0,0)(12.5,5)
2069 \includegraphics[width=1cm]{100_arrow.eps}
2070 \end{picture}
2071 \begin{picture}(0,0)(97,-10)
2072 \includegraphics[height=0.9cm]{001_arrow.eps}
2073 \end{picture}
2074 \end{center}
2075 \vspace{0.1cm}
2076 \end{minipage}
2077 }
2078 \begin{minipage}{0.3cm}
2079 \hfill
2080 \end{minipage}
2081 \framebox{
2082 \begin{minipage}{5.9cm}
2083 \includegraphics[width=5.9cm]{vasp_mig/comb_mig_4-2_vac_fullct.ps}\\[0.1cm]
2084 \begin{center}
2085 \begin{picture}(0,0)(60,0)
2086 \includegraphics[width=0.9cm]{vasp_mig/comb_3-1_init.eps}
2087 \end{picture}
2088 \begin{picture}(0,0)(25,0)
2089 \includegraphics[width=0.9cm]{vasp_mig/comb_3-1_seq_03.eps}
2090 \end{picture}
2091 \begin{picture}(0,0)(-20,0)
2092 \includegraphics[width=0.9cm]{vasp_mig/comb_3-1_seq_07.eps}
2093 \end{picture}
2094 \begin{picture}(0,0)(-55,0)
2095 \includegraphics[width=0.9cm]{vasp_mig/comb_3-1_final.eps}
2096 \end{picture}
2097 \begin{picture}(0,0)(12.5,5)
2098 \includegraphics[width=1cm]{100_arrow.eps}
2099 \end{picture}
2100 \begin{picture}(0,0)(95,0)
2101 \includegraphics[height=0.9cm]{001_arrow.eps}
2102 \end{picture}
2103 \end{center}
2104 \vspace{0.1cm}
2105 \end{minipage}
2106 }
2107
2108 \end{slide}
2109
2110 \begin{slide}
2111
2112  {\large\bf
2113   Conclusion of defect / migration / combined defect simulations
2114  }
2115
2116  \footnotesize
2117
2118 \vspace*{0.1cm}
2119
2120 Defect structures
2121 \begin{itemize}
2122  \item Accurately described by quantum-mechanical simulations
2123  \item Less accurate description by classical potential simulations
2124  \item Underestimated formation energy of \cs{} by classical approach
2125  \item Both methods predict same ground state: \ci{} \hkl<1 0 0> dumbbell
2126 \end{itemize}
2127
2128 Migration
2129 \begin{itemize}
2130  \item C migration pathway in Si identified
2131  \item Consistent with reorientation and diffusion experiments
2132 \end{itemize} 
2133 \begin{itemize}
2134  \item Different path and ...
2135  \item overestimated barrier by classical potential calculations
2136 \end{itemize} 
2137
2138 Concerning the precipitation mechanism
2139 \begin{itemize}
2140  \item Agglomeration of C-Si dumbbells energetically favorable
2141        (stress compensation)
2142  \item C-Si indeed favored compared to
2143        C$_{\text{sub}}$ \& \hkl<1 1 0> Si self-interstitial
2144  \item Possible low interaction capture radius of
2145        C$_{\text{sub}}$ \& \hkl<1 1 0> Si self-interstitial
2146  \item Low barrier for
2147        \ci{} \hkl<1 0 0> $\rightarrow$ \cs{} \& \si{} \hkl<1 1 0>
2148  \item In absence of nearby \hkl<1 1 0> Si self-interstitial:
2149        C-Si \hkl<1 0 0> + Vacancy $\rightarrow$ C$_{\text{sub}}$ (SiC)
2150 \end{itemize} 
2151 \begin{center}
2152 {\color{blue}Results suggest increased participation of \cs}
2153 \end{center}
2154
2155 \end{slide}
2156
2157 \begin{slide}
2158
2159  {\large\bf
2160   Silicon carbide precipitation simulations
2161  }
2162
2163  \small
2164
2165 {\scriptsize
2166  \begin{pspicture}(0,0)(12,6.5)
2167   % nodes
2168   \rput(3.5,5.2){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=hb]{
2169    \parbox{7cm}{
2170    \begin{itemize}
2171     \item Create c-Si volume
2172     \item Periodc boundary conditions
2173     \item Set requested $T$ and $p=0\text{ bar}$
2174     \item Equilibration of $E_{\text{kin}}$ and $E_{\text{pot}}$
2175    \end{itemize}
2176   }}}}
2177   \rput(3.5,2.7){\rnode{insert}{\psframebox[fillstyle=solid,fillcolor=lachs]{
2178    \parbox{7cm}{
2179    Insertion of C atoms at constant T
2180    \begin{itemize}
2181     \item total simulation volume {\pnode{in1}}
2182     \item volume of minimal SiC precipitate {\pnode{in2}}
2183     \item volume consisting of Si atoms to form a minimal {\pnode{in3}}\\
2184           precipitate
2185    \end{itemize} 
2186   }}}}
2187   \rput(3.5,1){\rnode{cool}{\psframebox[fillstyle=solid,fillcolor=lbb]{
2188    \parbox{7.0cm}{
2189    Run for 100 ps followed by cooling down to $20\, ^{\circ}\textrm{C}$
2190   }}}}
2191   \ncline[]{->}{init}{insert}
2192   \ncline[]{->}{insert}{cool}
2193   \psframe[fillstyle=solid,fillcolor=white](7.5,0.7)(13.5,6.3)
2194   \rput(7.8,6){\footnotesize $V_1$}
2195   \psframe[fillstyle=solid,fillcolor=lightgray](9,2)(12,5)
2196   \rput(9.2,4.85){\tiny $V_2$}
2197   \psframe[fillstyle=solid,fillcolor=gray](9.25,2.25)(11.75,4.75)
2198   \rput(9.55,4.45){\footnotesize $V_3$}
2199   \rput(7.9,3.2){\pnode{ins1}}
2200   \rput(9.22,2.8){\pnode{ins2}}
2201   \rput(11.0,2.4){\pnode{ins3}}
2202   \ncline[]{->}{in1}{ins1}
2203   \ncline[]{->}{in2}{ins2}
2204   \ncline[]{->}{in3}{ins3}
2205  \end{pspicture}
2206 }
2207
2208 \begin{itemize}
2209  \item Restricted to classical potential simulations
2210  \item $V_2$ and $V_3$ considered due to low diffusion
2211  \item Amount of C atoms: 6000
2212        ($r_{\text{prec}}\approx 3.1\text{ nm}$, IBS: 2 ... 4 nm)
2213  \item Simulation volume: $31\times 31\times 31$ unit cells
2214        (238328 Si atoms)
2215 \end{itemize}
2216
2217 \end{slide}
2218
2219 \begin{slide}
2220
2221  {\large\bf\boldmath
2222   Silicon carbide precipitation simulations at $450\,^{\circ}\mathrm{C}$ as in IBS
2223  }
2224
2225  \small
2226
2227 \begin{minipage}{6.5cm}
2228 \includegraphics[width=6.4cm]{sic_prec_450_si-si_c-c.ps}
2229 \end{minipage} 
2230 \begin{minipage}{6.5cm}
2231 \includegraphics[width=6.4cm]{sic_prec_450_energy.ps}
2232 \end{minipage} 
2233
2234 \begin{minipage}{6.5cm}
2235 \includegraphics[width=6.4cm]{sic_prec_450_si-c.ps}
2236 \end{minipage} 
2237 \begin{minipage}{6.5cm}
2238 \scriptsize
2239 \underline{Low C concentration ($V_1$)}\\
2240 \hkl<1 0 0> C-Si dumbbell dominated structure
2241 \begin{itemize}
2242  \item Si-C bumbs around 0.19 nm
2243  \item C-C peak at 0.31 nm (as expected in 3C-SiC):\\
2244        concatenated dumbbells of various orientation
2245  \item Si-Si NN distance stretched to 0.3 nm
2246 \end{itemize}
2247 {\color{blue}$\Rightarrow$ C atoms in proper 3C-SiC distance first}\\
2248 \underline{High C concentration ($V_2$, $V_3$)}\\
2249 High amount of strongly bound C-C bonds\\
2250 Defect density $\uparrow$ $\Rightarrow$ considerable amount of damage\\
2251 Only short range order observable\\
2252 {\color{blue}$\Rightarrow$ amorphous SiC-like phase}
2253 \end{minipage} 
2254
2255 \end{slide}
2256
2257 \begin{slide}
2258
2259  {\large\bf\boldmath
2260   Silicon carbide precipitation simulations at $450\,^{\circ}\mathrm{C}$ as in IBS
2261  }
2262
2263  \small
2264
2265 \begin{minipage}{6.5cm}
2266 \includegraphics[width=6.4cm]{sic_prec_450_si-si_c-c.ps}
2267 \end{minipage} 
2268 \begin{minipage}{6.5cm}
2269 \includegraphics[width=6.4cm]{sic_prec_450_energy.ps}
2270 \end{minipage} 
2271
2272 \begin{minipage}{6.5cm}
2273 \includegraphics[width=6.4cm]{sic_prec_450_si-c.ps}
2274 \end{minipage} 
2275 \begin{minipage}{6.5cm}
2276 \scriptsize
2277 \underline{Low C concentration ($V_1$)}\\
2278 \hkl<1 0 0> C-Si dumbbell dominated structure
2279 \begin{itemize}
2280  \item Si-C bumbs around 0.19 nm
2281  \item C-C peak at 0.31 nm (as expected in 3C-SiC):\\
2282        concatenated dumbbells of various orientation
2283  \item Si-Si NN distance stretched to 0.3 nm
2284 \end{itemize}
2285 {\color{blue}$\Rightarrow$ C atoms in proper 3C-SiC distance first}\\
2286 \underline{High C concentration ($V_2$, $V_3$)}\\
2287 High amount of strongly bound C-C bonds\\
2288 Defect density $\uparrow$ $\Rightarrow$ considerable amount of damage\\
2289 Only short range order observable\\
2290 {\color{blue}$\Rightarrow$ amorphous SiC-like phase}
2291 \end{minipage} 
2292
2293 \begin{pspicture}(0,0)(0,0)
2294 \rput(6.7,5.2){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=white]{
2295 \begin{minipage}{10cm}
2296 \small
2297 {\color{red}\bf 3C-SiC formation fails to appear}
2298 \begin{itemize}
2299 \item Low C concentration simulations
2300  \begin{itemize}
2301   \item Formation of \ci{} indeed occurs
2302   \item Agllomeration not observed
2303  \end{itemize}
2304 \item High C concentration simulations
2305  \begin{itemize}
2306   \item Amorphous SiC-like structure\\
2307         (not expected at prevailing temperatures)
2308   \item Rearrangement and transition into 3C-SiC structure missing
2309  \end{itemize}
2310 \end{itemize}
2311 \end{minipage}
2312  }}}
2313 \end{pspicture}
2314
2315 \end{slide}
2316
2317 \begin{slide}
2318
2319  {\large\bf
2320   Limitations of molecular dynamics and short range potentials
2321  }
2322
2323 \footnotesize
2324
2325 \vspace{0.2cm}
2326
2327 \underline{Time scale problem of MD}\\[0.2cm]
2328 Minimize integration error\\
2329 $\Rightarrow$ discretization considerably smaller than
2330               reciprocal of fastest vibrational mode\\[0.1cm]
2331 Order of fastest vibrational mode: $10^{13} - 10^{14}\text{ Hz}$\\
2332 $\Rightarrow$ suitable choice of time step:
2333               $\tau=1\text{ fs}=10^{-15}\text{ s}$\\
2334 $\Rightarrow$ {\color{red}\underline{slow}} phase space propagation\\[0.1cm]
2335 Several local minima in energy surface separated by large energy barriers\\
2336 $\Rightarrow$ transition event corresponds to a multiple
2337               of vibrational periods\\
2338 $\Rightarrow$ phase transition made up of {\color{red}\underline{many}}
2339               infrequent transition events\\[0.1cm]
2340 {\color{blue}Accelerated methods:}
2341 \underline{Temperature accelerated} MD (TAD), self-guided MD \ldots
2342
2343 \vspace{0.3cm}
2344
2345 \underline{Limitations related to the short range potential}\\[0.2cm]
2346 Cut-off function pushing forces and energies to zero between 1$^{\text{st}}$
2347 and 2$^{\text{nd}}$ next neighbours\\
2348 $\Rightarrow$ overestimated unphysical high forces of next neighbours
2349
2350 \vspace{0.3cm}
2351
2352 \framebox{
2353 \color{red}
2354 Potential enhanced problem of slow phase space propagation
2355 }
2356
2357 \vspace{0.3cm}
2358
2359 \underline{Approach to the (twofold) problem}\\[0.2cm]
2360 Increased temperature simulations without TAD corrections\\
2361 (accelerated methods or higher time scales exclusively not sufficient)
2362
2363 \begin{picture}(0,0)(-260,-30)
2364 \framebox{
2365 \begin{minipage}{4.2cm}
2366 \tiny
2367 \begin{center}
2368 \vspace{0.03cm}
2369 \underline{IBS}
2370 \end{center}
2371 \begin{itemize}
2372 \item 3C-SiC also observed for higher T
2373 \item higher T inside sample
2374 \item structural evolution vs.\\
2375       equilibrium properties
2376 \end{itemize}
2377 \end{minipage}
2378 }
2379 \end{picture}
2380
2381 \begin{picture}(0,0)(-305,-155)
2382 \framebox{
2383 \begin{minipage}{2.5cm}
2384 \tiny
2385 \begin{center}
2386 retain proper\\
2387 thermodynmic sampling
2388 \end{center}
2389 \end{minipage}
2390 }
2391 \end{picture}
2392
2393 \end{slide}
2394
2395 \begin{slide}
2396
2397  {\large\bf
2398   Increased temperature simulations at low C concentration
2399  }
2400
2401 \small
2402
2403 \begin{minipage}{6.5cm}
2404 \includegraphics[width=6.4cm]{tot_pc_thesis.ps}
2405 \end{minipage}
2406 \begin{minipage}{6.5cm}
2407 \includegraphics[width=6.4cm]{tot_pc3_thesis.ps}
2408 \end{minipage}
2409
2410 \begin{minipage}{6.5cm}
2411 \includegraphics[width=6.4cm]{tot_pc2_thesis.ps}
2412 \end{minipage}
2413 \begin{minipage}{6.5cm}
2414 \scriptsize
2415  \underline{Si-C bonds:}
2416  \begin{itemize}
2417   \item Vanishing cut-off artifact (above $1650\,^{\circ}\mathrm{C}$)
2418   \item Structural change: C-Si \hkl<1 0 0> $\rightarrow$ C$_{\text{sub}}$
2419  \end{itemize}
2420  \underline{Si-Si bonds:}
2421  {\color{blue}Si-C$_{\text{sub}}$-Si} along \hkl<1 1 0>
2422  ($\rightarrow$ 0.325 nm)\\[0.1cm]
2423  \underline{C-C bonds:}
2424  \begin{itemize}
2425   \item C-C next neighbour pairs reduced (mandatory)
2426   \item Peak at 0.3 nm slightly shifted
2427         \begin{itemize}
2428          \item C-Si \hkl<1 0 0> combinations (dashed arrows)\\
2429                $\rightarrow$ C-Si \hkl<1 0 0> \& C$_{\text{sub}}$
2430                combinations (|)\\
2431                $\rightarrow$ pure {\color{blue}C$_{\text{sub}}$ combinations}
2432                ($\downarrow$)
2433          \item Range [|-$\downarrow$]:
2434                {\color{blue}C$_{\text{sub}}$ \& C$_{\text{sub}}$
2435                with nearby Si$_{\text{I}}$}
2436         \end{itemize}
2437  \end{itemize}
2438 \end{minipage}
2439
2440 \begin{picture}(0,0)(-330,-74)
2441 \color{blue}
2442 \framebox{
2443 \begin{minipage}{1.6cm}
2444 \tiny
2445 \begin{center}
2446 stretched SiC\\[-0.1cm]
2447 in c-Si
2448 \end{center}
2449 \end{minipage}
2450 }
2451 \end{picture}
2452
2453 \end{slide}
2454
2455 \begin{slide}
2456
2457  {\large\bf
2458   Increased temperature simulations at low C concentration
2459  }
2460
2461 \small
2462
2463 \begin{minipage}{6.5cm}
2464 \includegraphics[width=6.4cm]{tot_pc_thesis.ps}
2465 \end{minipage}
2466 \begin{minipage}{6.5cm}
2467 \includegraphics[width=6.4cm]{tot_pc3_thesis.ps}
2468 \end{minipage}
2469
2470 \begin{minipage}{6.5cm}
2471 \includegraphics[width=6.4cm]{tot_pc2_thesis.ps}
2472 \end{minipage}
2473 \begin{minipage}{6.5cm}
2474 \scriptsize
2475  \underline{Si-C bonds:}
2476  \begin{itemize}
2477   \item Vanishing cut-off artifact (above $1650\,^{\circ}\mathrm{C}$)
2478   \item Structural change: C-Si \hkl<1 0 0> $\rightarrow$ C$_{\text{sub}}$
2479  \end{itemize}
2480  \underline{Si-Si bonds:}
2481  {\color{blue}Si-C$_{\text{sub}}$-Si} along \hkl<1 1 0>
2482  ($\rightarrow$ 0.325 nm)\\[0.1cm]
2483  \underline{C-C bonds:}
2484  \begin{itemize}
2485   \item C-C next neighbour pairs reduced (mandatory)
2486   \item Peak at 0.3 nm slightly shifted
2487         \begin{itemize}
2488          \item C-Si \hkl<1 0 0> combinations (dashed arrows)\\
2489                $\rightarrow$ C-Si \hkl<1 0 0> \& C$_{\text{sub}}$
2490                combinations (|)\\
2491                $\rightarrow$ pure {\color{blue}C$_{\text{sub}}$ combinations}
2492                ($\downarrow$)
2493          \item Range [|-$\downarrow$]:
2494                {\color{blue}C$_{\text{sub}}$ \& C$_{\text{sub}}$
2495                with nearby Si$_{\text{I}}$}
2496         \end{itemize}
2497  \end{itemize}
2498 \end{minipage}
2499
2500 %\begin{picture}(0,0)(-330,-74)
2501 %\color{blue}
2502 %\framebox{
2503 %\begin{minipage}{1.6cm}
2504 %\tiny
2505 %\begin{center}
2506 %stretched SiC\\[-0.1cm]
2507 %in c-Si
2508 %\end{center}
2509 %\end{minipage}
2510 %}
2511 %\end{picture}
2512
2513 \begin{pspicture}(0,0)(0,0)
2514 \rput(6.7,5.2){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=white]{
2515 \begin{minipage}{10cm}
2516 \small
2517 {\color{blue}\bf Stretched SiC in c-Si}
2518 \begin{itemize}
2519 \item Consistent to precipitation model involving \cs{}
2520 \item Explains annealing behavior of high/low T C implants
2521       \begin{itemize}
2522        \item Low T: highly mobiel \ci{}
2523        \item High T: stable configurations of \cs{}
2524       \end{itemize}
2525 \end{itemize}
2526 $\Rightarrow$ High T $\leftrightarrow$ IBS conditions far from equilibrium\\
2527 $\Rightarrow$ Precipitation mechanism involving \cs{}
2528 \end{minipage}
2529  }}}
2530 \end{pspicture}
2531
2532 \end{slide}
2533
2534 \begin{slide}
2535
2536  {\large\bf
2537   Increased temperature simulations at high C concentration
2538  }
2539
2540 \footnotesize
2541
2542 \begin{minipage}{6.5cm}
2543 \includegraphics[width=6.4cm]{12_pc_thesis.ps}
2544 \end{minipage}
2545 \begin{minipage}{6.5cm}
2546 \includegraphics[width=6.4cm]{12_pc_c_thesis.ps}
2547 \end{minipage}
2548
2549 \vspace{0.1cm}
2550
2551 \scriptsize
2552
2553 \framebox{
2554 \begin{minipage}[t]{6.0cm}
2555 0.186 nm: Si-C pairs $\uparrow$\\
2556 (as expected in 3C-SiC)\\[0.2cm]
2557 0.282 nm: Si-C-C\\[0.2cm]
2558 $\approx$0.35 nm: C-Si-Si
2559 \end{minipage}
2560 }
2561 \begin{minipage}{0.2cm}
2562 \hfill
2563 \end{minipage}
2564 \framebox{
2565 \begin{minipage}[t]{6.0cm}
2566 0.15 nm: C-C pairs $\uparrow$\\
2567 (as expected in graphite/diamond)\\[0.2cm]
2568 0.252 nm: C-C-C (2$^{\text{nd}}$ NN for diamond)\\[0.2cm]
2569 0.31 nm: shifted towards 0.317 nm $\rightarrow$ C-Si-C
2570 \end{minipage}
2571 }
2572
2573 \begin{itemize}
2574 \item Decreasing cut-off artifact
2575 \item {\color{red}Amorphous} SiC-like phase remains
2576 \item High amount of {\color{red}damage} \& alignement to c-Si host matrix lost
2577 \item Slightly sharper peaks $\Rightarrow$ indicate slight {\color{blue}acceleration of dynamics} due to temperature
2578 \end{itemize}
2579
2580 \vspace{-0.1cm}
2581
2582 \begin{center}
2583 {\color{blue}
2584 \framebox{
2585 {\color{black}
2586 High C \& small $V$ \& short $t$
2587 $\Rightarrow$
2588 }
2589 Slow restructuring due to strong C-C bonds
2590 {\color{black}
2591 $\Leftarrow$
2592 High C \& low T implants
2593 }
2594 }
2595 }
2596 \end{center}
2597
2598 \end{slide}
2599
2600 \begin{slide}
2601
2602  {\large\bf
2603   Summary and Conclusions
2604  }
2605
2606  \scriptsize
2607
2608 %\vspace{0.1cm}
2609
2610 \framebox{
2611 \begin{minipage}[t]{12.9cm}
2612  \underline{Pecipitation simulations}
2613  \begin{itemize}
2614   \item High C concentration $\rightarrow$ amorphous SiC like phase
2615   \item Problem of potential enhanced slow phase space propagation
2616   \item Low T $\rightarrow$ C-Si \hkl<1 0 0> dumbbell dominated structure
2617   \item High T $\rightarrow$ C$_{\text{sub}}$ dominated structure
2618   \item High T necessary to simulate IBS conditions (far from equilibrium)
2619   \item Precipitation by successive agglomeration of \cs (epitaxy)
2620   \item \si{}: vehicle to form \cs{} \& supply of Si \& stress compensation
2621         (stretched SiC, interface)
2622  \end{itemize}
2623 \end{minipage}
2624 }
2625
2626 %\vspace{0.1cm}
2627
2628 \framebox{
2629 \begin{minipage}{12.9cm}
2630  \underline{Defects}
2631  \begin{itemize}
2632    \item DFT / EA
2633         \begin{itemize}
2634          \item Point defects excellently / fairly well described
2635                by DFT / EA
2636          \item C$_{\text{sub}}$ drastically underestimated by EA
2637          \item EA predicts correct ground state:
2638                C$_{\text{sub}}$ \& \si{} $>$ \ci{}
2639          \item Identified migration path explaining
2640                diffusion and reorientation experiments by DFT
2641          \item EA fails to describe \ci{} migration:
2642                Wrong path \& overestimated barrier
2643         \end{itemize}
2644    \item Combinations of defects
2645          \begin{itemize}
2646           \item Agglomeration of point defects energetically favorable
2647                 by compensation of stress
2648           \item Formation of C-C unlikely
2649           \item C$_{\text{sub}}$ favored conditions (conceivable in IBS)
2650           \item \ci{} \hkl<1 0 0> $\leftrightarrow$ \cs{} \& \si{} \hkl<1 1 0>\\
2651                 Low barrier (\unit[0.77]{eV}) \& low capture radius
2652         \end{itemize}
2653  \end{itemize}
2654 \end{minipage}
2655 }
2656
2657 \begin{center}
2658 {\color{blue}
2659 \framebox{Precipitation by successive agglomeration of \cs{}}
2660 }
2661 \end{center}
2662
2663 \end{slide}
2664
2665 \begin{slide}
2666
2667  {\large\bf
2668   Acknowledgements
2669  }
2670
2671  \vspace{0.1cm}
2672
2673  \small
2674
2675  Thanks to \ldots
2676
2677  \underline{Augsburg}
2678  \begin{itemize}
2679   \item Prof. B. Stritzker (accomodation at EP \RM{4})
2680   \item Ralf Utermann (EDV)
2681  \end{itemize}
2682  
2683  \underline{Helsinki}
2684  \begin{itemize}
2685   \item Prof. K. Nordlund (MD)
2686  \end{itemize}
2687  
2688  \underline{Munich}
2689  \begin{itemize}
2690   \item Bayerische Forschungsstiftung (financial support)
2691  \end{itemize}
2692  
2693  \underline{Paderborn}
2694  \begin{itemize}
2695   \item Prof. J. Lindner (SiC)
2696   \item Prof. G. Schmidt (DFT + financial support)
2697   \item Dr. E. Rauls (DFT + SiC)
2698   \item Dr. S. Sanna (VASP)
2699  \end{itemize}
2700
2701 \vspace{0.2cm}
2702
2703 \begin{center}
2704 \framebox{
2705 \bf Thank you for your attention!
2706 }
2707 \end{center}
2708
2709 \end{slide}
2710
2711 \end{document}
2712
2713 \fi