2 \documentclass[a4paper,11pt]{article}
3 \usepackage[activate]{pdfcprot}
7 \usepackage[german]{babel}
8 \usepackage[latin1]{inputenc}
9 \usepackage[T1]{fontenc}
13 \usepackage[dvips]{graphicx}
14 \graphicspath{{./img/}}
20 \setlength{\headheight}{0mm} \setlength{\headsep}{0mm}
21 \setlength{\topskip}{-10mm} \setlength{\textwidth}{17cm}
22 \setlength{\oddsidemargin}{-10mm}
23 \setlength{\evensidemargin}{-10mm} \setlength{\topmargin}{-1cm}
24 \setlength{\textheight}{26cm} \setlength{\headsep}{0cm}
26 \renewcommand{\labelenumi}{(\alph{enumi})}
32 {\LARGE {\bf Materials Physics I}\\}
37 {\Large\bf Tutorial 4 - proposed solutions}
40 \section{Hall effect and magnetoresistance}
43 \item probability: $1-\frac{dt}{\tau}$
44 \item momentum contribution of non-colliding electrons:
46 \item momentum per electron at time $t+dt$:\\
48 p(t+dt)=\left(1-\frac{dt}{\tau}\right)
49 \left[p(t)+f(t)dt+O(dt)^2\right]
50 =p(t)-\frac{dt}{\tau}p(t)+f(t)+O(dt)^2
54 p(t+dt)-p(t)=-\frac{dt}{\tau}p(t)+f(t)dt+O(dt)^2
57 \frac{p(t+dt)-p(t)}{dt}=-\frac{p(t)}{\tau}+f(t)+\frac{O(dt)^2}{dt}
60 \stackrel{dt\rightarrow 0}{\Rightarrow} \quad
61 \frac{dp(t)}{dt}=-\frac{p(t)}{\tau}+f(t)
63 \item \includegraphics[width=14cm]{hall.eps}
65 \frac{dp}{dt}=-e\left(E+\frac{p}{m}\times B\right)-\frac{p}{\tau}
67 steady state ($\frac{dp}{dt}=0$):
69 \item $x$ component: $0=-eE_x-\frac{eB}{m}p_y-\frac{p_x}{\tau}$
70 \item $y$ component: $0=-eE_y-\frac{eB}{m}p_x-\frac{p_y}{\tau}$
72 setting $j_y$ to zero in the second equation ($\Rightarrow p_y=0$):
74 E_y=-\left(\frac{B}{m}\right)p_x
75 \stackrel{j=-ne\frac{p}{m}}{=}-\left(\frac{B}{ne}\right)j_x
78 \Rightarrow R_H=-\frac{1}{ne}
81 \item electron density: $n=\frac{V\rho}{A_ru}/V=\frac{\rho}{A_ru}$
82 \item $R_H=-\frac{1}{ne}=-\frac{A_ru}{e\rho}$
83 \item $j_x=\frac{I}{ld}$
84 \item $E_{Hall}=E_y=R_HBj_x=\ldots=5.3 \cdot 10^{-5} \, \frac{V}{m}$
85 \item $U_{Hall}=E_y l=\ldots=-7.95 \, \mu V$