]> hackdaworld.org Git - lectures/latex.git/blob - solid_state_physics/tutorial/2_02s.tex
beta version
[lectures/latex.git] / solid_state_physics / tutorial / 2_02s.tex
1 \pdfoutput=0
2 \documentclass[a4paper,11pt]{article}
3 \usepackage[activate]{pdfcprot}
4 \usepackage{verbatim}
5 \usepackage{a4}
6 \usepackage{a4wide}
7 \usepackage[german]{babel}
8 \usepackage[latin1]{inputenc}
9 \usepackage[T1]{fontenc}
10 \usepackage{amsmath}
11 \usepackage{ae}
12 \usepackage{aecompl}
13 \usepackage[dvips]{graphicx}
14 \graphicspath{{./img/}}
15 \usepackage{color}
16 \usepackage{pstricks}
17 \usepackage{pst-node}
18 \usepackage{rotating}
19
20 \setlength{\headheight}{0mm} \setlength{\headsep}{0mm}
21 \setlength{\topskip}{-10mm} \setlength{\textwidth}{17cm}
22 \setlength{\oddsidemargin}{-10mm}
23 \setlength{\evensidemargin}{-10mm} \setlength{\topmargin}{-1cm}
24 \setlength{\textheight}{26cm} \setlength{\headsep}{0cm}
25
26 \renewcommand{\labelenumi}{(\alph{enumi})}
27 \renewcommand{\labelenumii}{\arabic{enumii})}
28 \renewcommand{\labelenumiii}{\roman{enumiii})}
29
30 \begin{document}
31
32 % header
33 \begin{center}
34  {\LARGE {\bf Materials Physics II}\\}
35  \vspace{8pt}
36  Prof. B. Stritzker\\
37  SS 2008\\
38  \vspace{8pt}
39  {\Large\bf Tutorial 2 - proposed solutions}
40 \end{center}
41
42 \section{Critical current in the surface region of a type 1 superconductor}
43 \[
44  j_s(r)=j_s(R)\exp\left(\frac{-(R-r)}{\lambda}\right)
45 \]
46 $R$: radius of the wire, $r$: distance from the cylinder axis,
47 and $\lambda$: London penetration depth.
48
49 \begin{enumerate}
50  \item $I_c=\int_0^R dr \int_0^{2\pi} d\phi \, j_c(r) r$\\
51        $\Rightarrow I_c=\int_0^R dr \, 2\pi j_c(r) r
52         = j_c(R)2\pi \int_0^R dr \, r \exp(-(R-r)/\lambda)
53         = j_c(R)2\pi \exp(-R/\lambda) \int_0^R dr \, r \exp(r/\lambda)$
54        $x=\frac{r}{\lambda} \rightarrow \frac{dx}{dr}=\frac{1}{\lambda}
55         \Rightarrow dr=\lambda dx$, $r=\lambda x$
56        $\Rightarrow
57         I_c=j_c(R)2\pi \lambda^2 \exp(-R/\lambda) \int_0^R d(\frac{r}{\lambda})
58             \, \frac{r}{\lambda} \exp(\frac{r}{\lambda})$\\
59        Integration by parts: $\int uv' = uv - \int vu'$\\
60        $\int xe^x dx = xe^x-\int e^x dx=xe^x-e^x+c=e^x(x-1)+c$\\
61        $\Rightarrow
62         I_c=j_c(R)2\pi \lambda^2\exp(-R/\lambda) \left[
63         \exp(\frac{r}{\lambda})(r\lambda-1) \right]_0^R$\\
64        $\left[ \exp(\frac{r}{\lambda})(r\lambda-1) \right]_0^R=
65         \exp(R/\lambda)(R/\lambda-1)-1(-1)$\\
66        $\Rightarrow I_c=j_c(R)2\pi \lambda^2 \left[
67         \underbrace{\exp(-R/\lambda)\exp(R/\lambda)}_{=1}
68         (R/\lambda-1)+
69         \underbrace{\exp(-R/\lambda)}_{\approx 0 \text{, since } \lambda\ll R} \right]$\\
70        $\Rightarrow
71         I_c\approx j_c(R)2\pi \lambda^2
72         \underbrace{(R/\lambda-1)}_{\approx R/\lambda}\approx
73         j_c(R)2\pi \lambda R$\\
74        $\Rightarrow j_c(R)\approx\frac{I_c}{2\pi R\lambda}$
75  \item $j_c(R,T=0)=\frac{I_c(T=0)}{2\pi R\lambda(T=0)}
76         =7.9\cdot 10^7\frac{A}{cm^2}$
77 \end{enumerate}
78
79 \section{Penetration of the magnetic field into a type 1 superconductor}
80 \[
81  {\bf B}_s=\mu_0 \left({\bf H}_a + {\bf M}_s\right)
82 \]
83 ${\bf H}_a$: strength of the applied magnetic field,
84 ${\bf M}_s$: magnetization of the superconductor.
85
86 \begin{enumerate}
87  \item $\frac{1}{\mu_0} rot {\bf B}_s =
88         rot {\bf H}_a + rot {\bf M}_s
89         \stackrel{rot {\bf H}={\bf j}+\frac{d{\bf D}}{dt}}{=}
90         \underbrace{{\bf j}_a}_{=0}
91         +{\bf j}_s$\\
92        $\Rightarrow
93         rot {\bf B}_s=\mu_0 {\bf j}_s \qquad | rot ...$\\
94        $\Rightarrow
95         \underbrace{rot rot {\bf B}_s}_{grad \underbrace{div {\bf B}_s}_{=0}
96         -\Delta {\bf B}_s}
97         =\mu_0rot {\bf j}_s\stackrel{\text{London II}}{=}
98         -\frac{\mu_0}{\Lambda}{\bf B}_s$\\
99        $\Rightarrow
100         \Delta {\bf B}_s=\frac{\mu_0}{\Lambda}{\bf B}_s$
101  \item ${\bf B}_a=\mu_0 H_a {\bf e}_z$, ${\bf B}_s=B_{s_z}(x) {\bf e}_x$\\
102        Diff. equation: $\frac{d^2}{dx^2}B_{s_z}(x)-
103                         \frac{\mu_0}{\Lambda}B_{s_z}(x)=0$\\
104        Solution: $B_{s_z}(x)=B_{s_z}(0)\exp(-\frac{x}{\lambda})$, with
105                  $\lambda=\sqrt{\frac{\Lambda}{\mu_0}}$\\
106        \includegraphics[width=16cm]{mfsc.ps}
107  \item $\mu_0 {\bf j}_s=rot{\bf B}_s=
108         \frac{-\partial B_{s_z}(x)}{\partial x} {\bf e}_y=
109         \frac{1}{\lambda} B_a \exp(-\frac{x}{\lambda}){\bf e}_y$\\
110        $\Rightarrow$ Direction of screening current is ${\bf e}_y$.\\
111        $\Rightarrow$ Exponential decay inside the SC.\\
112        Interface: ${\bf j}_s(x=0)=\frac{B_a}{\lambda\mu_0} {\bf e}_y$
113 \end{enumerate}
114
115 \end{document}