2 \documentclass[a4paper,11pt]{article}
3 \usepackage[activate]{pdfcprot}
7 \usepackage[german]{babel}
8 \usepackage[latin1]{inputenc}
9 \usepackage[T1]{fontenc}
13 \usepackage[dvips]{graphicx}
14 \graphicspath{{./img/}}
20 \setlength{\headheight}{0mm} \setlength{\headsep}{0mm}
21 \setlength{\topskip}{-10mm} \setlength{\textwidth}{17cm}
22 \setlength{\oddsidemargin}{-10mm}
23 \setlength{\evensidemargin}{-10mm} \setlength{\topmargin}{-1cm}
24 \setlength{\textheight}{26cm} \setlength{\headsep}{0cm}
26 \renewcommand{\labelenumi}{(\alph{enumi})}
27 \renewcommand{\labelenumii}{\arabic{enumii})}
28 \renewcommand{\labelenumiii}{\roman{enumiii})}
34 {\LARGE {\bf Materials Physics II}\\}
39 {\Large\bf Tutorial 2 - proposed solutions}
42 \section{Critical current in the surface region of a type 1 superconductor}
44 j_s(r)=j_s(R)\exp\left(\frac{-(R-r)}{\lambda}\right)
46 $R$: radius of the wire, $r$: distance from the cylinder axis,
47 and $\lambda$: London penetration depth.
50 \item $I_c=\int_0^R dr \int_0^{2\pi} d\phi \, j_c(r) r$\\
51 $\Rightarrow I_c=\int_0^R dr \, 2\pi j_c(r) r
52 = j_c(R)2\pi \int_0^R dr \, r \exp(-(R-r)/\lambda)
53 = j_c(R)2\pi \exp(-R/\lambda) \int_0^R dr \, r \exp(r/\lambda)$
54 $x=\frac{r}{\lambda} \rightarrow \frac{dx}{dr}=\frac{1}{\lambda}
55 \Rightarrow dr=\lambda dx$, $r=\lambda x$
57 I_c=j_c(R)2\pi \lambda^2 \exp(-R/\lambda) \int_0^R d(\frac{r}{\lambda})
58 \, \frac{r}{\lambda} \exp(\frac{r}{\lambda})$\\
59 Integration by parts: $\int uv' = uv - \int vu'$\\
60 $\int xe^x dx = xe^x-\int e^x dx=xe^x-e^x+c=e^x(x-1)+c$\\
62 I_c=j_c(R)2\pi \lambda^2\exp(-R/\lambda) \left[
63 \exp(\frac{r}{\lambda})(r\lambda-1) \right]_0^R$\\
64 $\left[ \exp(\frac{r}{\lambda})(r\lambda-1) \right]_0^R=
65 \exp(R/\lambda)(R/\lambda-1)-1(-1)$\\
66 $\Rightarrow I_c=j_c(R)2\pi \lambda^2 \left[
67 \underbrace{\exp(-R/\lambda)\exp(R/\lambda)}_{=1}
69 \underbrace{\exp(-R/\lambda)}_{\approx 0 \text{, since } \lambda\ll R} \right]$\\
71 I_c\approx j_c(R)2\pi \lambda^2
72 \underbrace{(R/\lambda-1)}_{\approx R/\lambda}\approx
73 j_c(R)2\pi \lambda R$\\
74 $\Rightarrow j_c(R)\approx\frac{I_c}{2\pi R\lambda}$
75 \item $j_c(R,T=0)=\frac{I_c(T=0)}{2\pi R\lambda(T=0)}
76 =7.9\cdot 10^7\frac{A}{cm^2}$
79 \section{Penetration of the magnetic field into a type 1 superconductor}
81 {\bf B}_s=\mu_0 \left({\bf H}_a + {\bf M}_s\right)
83 ${\bf H}_a$: strength of the applied magnetic field,
84 ${\bf M}_s$: magnetization of the superconductor.
87 \item $\frac{1}{\mu_0} rot {\bf B}_s =
88 rot {\bf H}_a + rot {\bf M}_s
89 \stackrel{rot {\bf H}={\bf j}+\frac{d{\bf D}}{dt}}{=}
90 \underbrace{{\bf j}_a}_{=0}
93 rot {\bf B}_s=\mu_0 {\bf j}_s \qquad | rot ...$\\
95 \underbrace{rot rot {\bf B}_s}_{grad \underbrace{div {\bf B}_s}_{=0}
97 =\mu_0rot {\bf j}_s\stackrel{\text{London II}}{=}
98 -\frac{\mu_0}{\Lambda}{\bf B}_s$\\
100 \Delta {\bf B}_s=\frac{\mu_0}{\Lambda}{\bf B}_s$
101 \item ${\bf B}_a=\mu_0 H_a {\bf e}_z$, ${\bf B}_s=B_{s_z}(x) {\bf e}_x$\\
102 Diff. equation: $\frac{d^2}{dx^2}B_{s_z}(x)-
103 \frac{\mu_0}{\Lambda}B_{s_z}(x)=0$\\
104 Solution: $B_{s_z}(x)=B_{s_z}(0)\exp(-\frac{x}{\lambda})$, with
105 $\lambda=\sqrt{\frac{\Lambda}{\mu_0}}$\\
106 \includegraphics[width=16cm]{mfsc.ps}
107 \item $\mu_0 {\bf j}_s=rot{\bf B}_s=
108 \frac{-\partial B_{s_z}(x)}{\partial x} {\bf e}_y=
109 \frac{1}{\lambda} B_a \exp(-\frac{x}{\lambda}){\bf e}_y$\\
110 $\Rightarrow$ Direction of screening current is ${\bf e}_y$.\\
111 $\Rightarrow$ Exponential decay inside the SC.\\
112 Interface: ${\bf j}_s(x=0)=\frac{B_a}{\lambda\mu_0} {\bf e}_y$