some stuff on migration energies ...
[lectures/latex.git] / posic / talks / upb-ua-xc.tex
index 502375b..524ec2b 100644 (file)
@@ -219,7 +219,7 @@ POTIM = 0.1
   \item Calculation of cohesive energies for different lattice constants
   \item No ionic update
   \item Tetrahedron method with Blöchl corrections for
   \item Calculation of cohesive energies for different lattice constants
   \item No ionic update
   \item Tetrahedron method with Blöchl corrections for
-        the partial occupancies $f_{nk}$
+        the partial occupancies $f(\{\epsilon_{n{\bf k}}\})$
   \item Supercell 3 (8 atoms, 4 primitive cells)
  \end{itemize}
  \vspace*{0.6cm}
   \item Supercell 3 (8 atoms, 4 primitive cells)
  \end{itemize}
  \vspace*{0.6cm}
@@ -270,7 +270,7 @@ POTIM = 0.1
   \item Calculation of cohesive energies for different lattice constants
   \item No ionic update
   \item Tetrahedron method with Blöchl corrections for
   \item Calculation of cohesive energies for different lattice constants
   \item No ionic update
   \item Tetrahedron method with Blöchl corrections for
-        the partial occupancies $f_{nk}$
+        the partial occupancies $f(\{\epsilon_{n{\bf k}}\})$
  \end{itemize}
  \vspace*{0.6cm}
  \begin{minipage}{6.5cm}
  \end{itemize}
  \vspace*{0.6cm}
  \begin{minipage}{6.5cm}
@@ -283,7 +283,15 @@ POTIM = 0.1
  \begin{center}
  {\color{red}
   Non-continuous energies\\
  \begin{center}
  {\color{red}
   Non-continuous energies\\
-  for $E_{\textrm{cut-off}}<1050\,\textrm{eV}$!
+  for $E_{\textrm{cut-off}}<1050\,\textrm{eV}$!\\
+ }
+ \vspace*{0.5cm}
+ {\footnotesize
+ Does this matter in structural optimizaton simulations?
+ \begin{itemize}
+  \item Derivative might be continuous
+  \item Similar lattice constants where derivative equals zero
+ \end{itemize}
  }
  \end{center}
  \end{minipage}
  }
  \end{center}
  \end{minipage}
@@ -348,25 +356,30 @@ POTIM = 0.1
          \item Spin polarized calculation
          \item Interpolation formula according to Vosko Wilk and Nusair
                for the correlation part of the exchange correlation functional
          \item Spin polarized calculation
          \item Interpolation formula according to Vosko Wilk and Nusair
                for the correlation part of the exchange correlation functional
-         \item Gaussian smearing for the partial occupancies $f_{nk}$
+         \item Gaussian smearing for the partial occupancies
+               $f(\{\epsilon_{n{\bf k}}\})$
                ($\sigma=0.05$)
          \item Magnetic mixing: AMIX = 0.2, BMIX = 0.0001
          \item Supercell: one atom in cubic
                $10\times 10\times 10$ \AA$^3$ box
         \end{itemize}
         {\color{blue}
                ($\sigma=0.05$)
          \item Magnetic mixing: AMIX = 0.2, BMIX = 0.0001
          \item Supercell: one atom in cubic
                $10\times 10\times 10$ \AA$^3$ box
         \end{itemize}
         {\color{blue}
-        $E_{\textrm{free,sp}}(\textrm{Si},250\, \textrm{eV})=
+        $E_{\textrm{free,sp}}(\textrm{Si},{\color{green}250}\, \textrm{eV})=
          -0.70036911\,\textrm{eV}$
          -0.70036911\,\textrm{eV}$
+        }\\
+        {\color{blue}
+        $E_{\textrm{free,sp}}(\textrm{Si},{\color{red}650}\, \textrm{eV})=
+         -0.70021403\,\textrm{eV}$
         },
         {\color{gray}
         },
         {\color{gray}
-        $E_{\textrm{free,sp}}(\textrm{C},xxx\, \textrm{eV})=
-         yyy\,\textrm{eV}$
+        $E_{\textrm{free,sp}}(\textrm{C},{\color{red}650}\, \textrm{eV})=
+         -1.3535731\,\textrm{eV}$
         }
   \item $E$:
         energy (non-polarized) of system of interest composed of\\
         n atoms of type N, m atoms of type M, \ldots
  \end{itemize}
         }
   \item $E$:
         energy (non-polarized) of system of interest composed of\\
         n atoms of type N, m atoms of type M, \ldots
  \end{itemize}
- \vspace*{0.3cm}
+ \vspace*{0.2cm}
  {\color{red}
  \[
  \Rightarrow
  {\color{red}
  \[
  \Rightarrow
@@ -379,6 +392,49 @@ POTIM = 0.1
 
 \end{slide}
 
 
 \end{slide}
 
+\begin{slide}
+
+ {\large\bf
+  Calculation of the defect formation energy\\
+ }
+
+ \small
+ {\color{blue}Method 1} (single species)
+ \begin{itemize}
+  \item $E_{\textrm{coh}}^{\textrm{initial conf}}$:
+        cohesive energy per atom of the initial system
+  \item $E_{\textrm{coh}}^{\textrm{interstitial conf}}$:
+        cohesive energy per atom of the interstitial system
+  \item N: amount of atoms in the interstitial system
+ \end{itemize}
+ \vspace*{0.2cm}
+ {\color{blue}
+ \[
+ \Rightarrow
+ E_{\textrm{f}}=\Big(E_{\textrm{coh}}^{\textrm{interstitial conf}}
+               -E_{\textrm{coh}}^{\textrm{initial conf}}\Big) N
+ \]
+ }\\[0.4cm]
+ {\color{magenta}Method 2} (two and more species)
+ \begin{itemize}
+  \item $E$: energy of the interstitial system
+        (with respect to the ground state of the free atoms!)
+  \item $N_{\text{Si}}$, $N_{\text{C}}$:
+        amount of Si and C atoms
+  \item $\mu_{\text{Si}}$, $\mu_{\text{C}}$:
+        chemical potential (cohesive energy) of Si and C
+ \end{itemize}
+ \vspace*{0.2cm}
+ {\color{magenta}
+ \[
+ \Rightarrow
+ E_{\textrm{f}}=E-N_{\text{Si}}\mu_{\text{Si}}-N_{\text{C}}\mu_{\text{C}}
+ \]
+ }
+
+\end{slide}
+
 \begin{slide}
 
  {\large\bf
 \begin{slide}
 
  {\large\bf
@@ -430,22 +486,6 @@ POTIM = 0.1
 
  \small
 
 
  \small
 
- Calculation of formation energy $E_{\textrm{f}}$
- \begin{itemize}
-  \item $E_{\textrm{coh}}^{\textrm{initial conf}}$:
-        cohesive energy per atom of the initial system
-  \item $E_{\textrm{coh}}^{\textrm{interstitial conf}}$:
-        cohesive energy per atom of the interstitial system
-  \item N: amount of atoms in the interstitial system
- \end{itemize}
- \vspace*{0.2cm}
- {\color{blue}
- \[
- \Rightarrow
- E_{\textrm{f}}=\Big(E_{\textrm{coh}}^{\textrm{interstitial conf}}
-               -E_{\textrm{coh}}^{\textrm{initial conf}}\Big) N
- \]
- }
  Influence of supercell size\\
  \begin{minipage}{8cm}
  \includegraphics[width=7.0cm]{si_self_int.ps}
  Influence of supercell size\\
  \begin{minipage}{8cm}
  \includegraphics[width=7.0cm]{si_self_int.ps}
@@ -454,9 +494,29 @@ POTIM = 0.1
  $E_{\textrm{f}}^{\textrm{110},\,32\textrm{pc}}=3.38\textrm{ eV}$\\
  $E_{\textrm{f}}^{\textrm{tet},\,32\textrm{pc}}=3.41\textrm{ eV}$\\
  $E_{\textrm{f}}^{\textrm{hex},\,32\textrm{pc}}=3.42\textrm{ eV}$\\
  $E_{\textrm{f}}^{\textrm{110},\,32\textrm{pc}}=3.38\textrm{ eV}$\\
  $E_{\textrm{f}}^{\textrm{tet},\,32\textrm{pc}}=3.41\textrm{ eV}$\\
  $E_{\textrm{f}}^{\textrm{hex},\,32\textrm{pc}}=3.42\textrm{ eV}$\\
- $E_{\textrm{f}}^{\textrm{vac},\,32\textrm{pc}}=3.51\textrm{ eV}$
+ $E_{\textrm{f}}^{\textrm{vac},\,32\textrm{pc}}=3.51\textrm{ eV}$\\\\
+ $E_{\textrm{f}}^{\textrm{hex},\,54\textrm{pc}}=3.42\textrm{ eV}$\\
+ $E_{\textrm{f}}^{\textrm{tet},\,54\textrm{pc}}=3.45\textrm{ eV}$\\
+ $E_{\textrm{f}}^{\textrm{vac},\,54\textrm{pc}}=3.47\textrm{ eV}$\\
+ $E_{\textrm{f}}^{\textrm{110},\,54\textrm{pc}}=3.48\textrm{ eV}$
  \end{minipage}
 
  \end{minipage}
 
+ Comparison with literature (PRL 88 235501 (2002)):\\[0.2cm]
+ \begin{minipage}{8cm}
+ \begin{itemize}
+  \item GGA and LDA
+  \item $E_{\text{cut-off}}=35 / 25\text{ Ry}=476 / 340\text{ eV}$
+  \item 216 atom supercell
+  \item Gamma point only calculations
+ \end{itemize}
+ \end{minipage}
+ \begin{minipage}{5cm}
+ $E_{\textrm{f}}^{\textrm{110}}=3.31 / 2.88\textrm{ eV}$\\
+ $E_{\textrm{f}}^{\textrm{hex}}=3.31 / 2.87\textrm{ eV}$\\
+ $E_{\textrm{f}}^{\textrm{vac}}=3.17 / 3.56\textrm{ eV}$
+ \end{minipage}
+
 \end{slide}
 
 \begin{slide}
 \end{slide}
 
 \begin{slide}
@@ -479,6 +539,7 @@ POTIM = 0.1
          \item hence also connected to choice of smearing method?
          \item constraints can only be applied to the lattice vectors!
         \end{itemize}
          \item hence also connected to choice of smearing method?
          \item constraints can only be applied to the lattice vectors!
         \end{itemize}
+  \item Use of real space projection operators?
   \item \ldots
  \end{itemize}
 
   \item \ldots
  \end{itemize}
 
@@ -490,8 +551,276 @@ POTIM = 0.1
   Review (so far) ...\\
  }
 
   Review (so far) ...\\
  }
 
+ Smearing method for the partial occupancies $f(\{\epsilon_{n{\bf k}}\})$
+ and $k$-point mesh
+
+ \begin{minipage}{4.4cm}
+  \includegraphics[width=4.4cm]{sic_smear_k.ps}
+ \end{minipage}
+ \begin{minipage}{4.4cm}
+  \includegraphics[width=4.4cm]{c_smear_k.ps}
+ \end{minipage}
+ \begin{minipage}{4.3cm}
+  \includegraphics[width=4.4cm]{si_smear_k.ps}
+ \end{minipage}\\[0.3cm]
+ \begin{itemize}
+  \item Convergence reached at $6\times 6\times 6$ k-point mesh
+  \item No difference between Gauss ($\sigma=0.05$)
+        and tetrahedron smearing method!
+ \end{itemize}
+ \begin{center}
+ $\Downarrow$\\
+ {\color{blue}\bf
+   Gauss ($\sigma=0.05$) smearing
+   and $6\times 6\times 6$ Monkhorst $k$-point mesh used
+ }
+ \end{center}
+
+\end{slide}
+
+\begin{slide}
+
+ {\large\bf
+  Review (so far) ...\\
+ }
+
+ \underline{Symmetry (in defect simulations)}
+
+ \begin{center}
+ {\color{red}No}
+ difference in $1\times 1\times 1$ Type 2 defect calculations\\
+ $\Downarrow$\\
+ Symmetry precission (SYMPREC) small enough\\
+ $\Downarrow$\\
+ {\bf\color{blue}Symmetry switched on}\\
+ \end{center}
+
+ \underline{Real space projection}
+
+ \begin{center}
+ Error in lattice constant of plain Si ($1\times 1\times 1$ Type 2):
+ $0.025\,\%$\\
+ Error in position of the 110 interstitital in Si ($1\times 1\times 1$ Type 2):
+ $0.026\,\%$\\
+ $\Downarrow$\\
+ {\bf\color{blue}
+  Real space projection used for 'large supercell' simulations}
+ \end{center}
+
+\end{slide}
+
+\begin{slide}
+
+ {\large\bf
+  Review (so far) ...
+ }
+
+ Energy cut-off\\
+
+ \begin{center}
+
+ {\small
+ 3C-SiC equilibrium lattice constant and free energy\\ 
+ \includegraphics[width=7cm]{plain_sic_lc.ps}\\
+ $\rightarrow$ Convergence reached at 650 eV\\[0.2cm]
+ }
+
+ $\Downarrow$\\
+
+ {\bf\color{blue}
+  650 eV used as energy cut-off
+ }
+
+ \end{center}
+
+\end{slide}
+
+\begin{slide}
+
+ {\large\bf
+  Not answered (so far) ...\\
+ }
+
+\vspace{1.5cm}
+
+ \LARGE
+ \bf
+ \color{blue}
+
+ \begin{center}
+ Continue\\
+ with\\
+ US LDA?
+ \end{center}
+
+\vspace{1.5cm}
+
+\end{slide}
+
+\begin{slide}
+
+ {\large\bf
+  Final parameter choice
+ }
+
+ \footnotesize
+
+ \underline{Param 1}\\
+ My first choice. Used for more accurate calculations.
+ \begin{itemize}
+  \item $6\times 6 \times 6$ Monkhorst k-point mesh
+  \item $E_{\text{cut-off}}=650\text{ eV}$
+  \item Gaussian smearing ($\sigma=0.05$)
+  \item Use symmetry
+ \end{itemize}
+ \vspace*{0.2cm}
+ \underline{Param 2}\\
+ After talking to the pros!
+ \begin{itemize}
+  \item $\Gamma$-point only
+  \item $E_{\text{cut-off}}=xyz\text{ eV}$
+  \item Gaussian smearing ($\sigma=0.05$)
+  \item Use symmetry
+  \item Real space projection (Auto, Medium) for 'large' simulations
+ \end{itemize}
+ \vspace*{0.2cm}
+ {\color{blue}
+  In both parameter sets the ultra soft pseudo potential method
+  as well as the projector augmented wave method is used with both,
+  the LDA and GGA exchange correlation potential!
+ }
+\end{slide}
+
+\begin{slide}
+
+ \footnotesize
+
+ {\large\bf
+  Properties of Si, C and SiC using the new parameters\\
+ }
+
+ $2\times 2\times 2$ Type 2 supercell, Param 1, LDA, US PP\\[0.2cm]
+ \begin{tabular}{|l|l|l|l|}
+ \hline
+  & c-Si & c-C (diamond) & 3C-SiC \\
+ \hline
+ Lattice constant [\AA] & 5.389 & 3.527 & 4.319 \\
+ Expt. [\AA] & 5.429 & 3.567 & 4.359 \\
+ Error [\%] & {\color{green}0.7} & {\color{green}1.1} & {\color{green}0.9} \\
+ \hline
+ Cohesive energy [eV] & -5.277 & -8.812 & -7.318 \\
+ Expt. [eV] & -4.63 & -7.374 & -6.340 \\
+ Error [\%] & {\color{red}14.0} & {\color{red}19.5} & {\color{red}15.4} \\
+ \hline
+ \end{tabular}\\
+
+ \begin{minipage}{10cm}
+ $2\times 2\times 2$ Type 2 supercell, 3C-SiC, Param 1\\[0.2cm]
+ \begin{tabular}{|l|l|l|l|}
+ \hline
+  & {\color{magenta}US PP, GGA} & PAW, LDA & PAW, GGA \\
+ \hline
+ Lattice constant [\AA] & 4.370 & 4.330 & 4.379 \\
+ Error [\%] & {\color{green}0.3} & {\color{green}0.7} & {\color{green}0.5} \\
+ \hline
+ Cohesive energy [eV] & -6.426 & -7.371 & -6.491 \\
+ Error [\%] & {\color{green}1.4} & {\color{red}16.3} & {\color{green}2.4} \\
+ \hline
+ \end{tabular}
+ \end{minipage}
+ \begin{minipage}{3cm}
+ US PP, GGA\\[0.2cm]
+ \begin{tabular}{|l|l|}
+ \hline
+ c-Si & c-C \\
+ \hline
+ 5.455 & 3.567 \\
+ {\color{green}0.5} & {\color{green}0.01} \\
+ \hline
+ -4.591 & -7.703 \\
+ {\color{green}0.8} & {\color{orange}4.5} \\
+ \hline
+ \end{tabular}
+ \end{minipage}
+
+\end{slide}
+
+\begin{slide}
+
+ {\large\bf
+  Energy cut-off for $\Gamma$-point only caclulations
+ }
+
+ $2\times 2\times 2$ Type 2 supercell, Param 2, US PP, LDA, 3C-SiC\\[0.2cm]
+ \includegraphics[width=5.5cm]{sic_32pc_gamma_cutoff.ps}
+ \includegraphics[width=5.5cm]{sic_32pc_gamma_cutoff_lc.ps}\\
+ $\Rightarrow$ Use 300 eV as energy cut-off?\\[0.2cm]
+ $2\times 2\times 2$ Type 2 supercell, Param 2, 300 eV, US PP, GGA\\[0.2cm]
+ \small
+ \begin{minipage}{10cm}
+ \begin{tabular}{|l|l|l|l|}
+ \hline
+  & c-Si & c-C (diamond) & 3C-SiC \\
+ \hline
+ Lattice constant [\AA] & 5.470 & 3.569 & 4.364 \\
+ Error [\%] & {\color{green}0.8} & {\color{green}0.1} & {\color{green}0.1} \\
+ \hline
+ Cohesive energy [eV] & -4.488 & -7.612 & -6.359 \\
+ Error [\%] & {\color{orange}3.1} & {\color{orange}3.2} & {\color{green}0.3} \\
+ \hline
+ \end{tabular}
+ \end{minipage}
+ \begin{minipage}{2cm}
+ {\LARGE
+  ${\color{green}\surd}$
+ }
+ \end{minipage}
+
+\end{slide}
+
+\begin{slide}
+
+ {\large\bf
+  C 100 interstitial migration along 110 in c-Si (Albe potential)
+ }
+
+ \small
+
+ \begin{minipage}[t]{4.2cm}
+ \underline{Starting configuration}\\
+ \includegraphics[width=4cm]{c_100_mig/start.eps}
+ \end{minipage}
+ \begin{minipage}[t]{4.0cm}
+ \vspace*{0.8cm}
+ $\Delta x=\frac{1}{4}a_{\text{Si}}=1.357\text{ \AA}$\\
+ $\Delta y=\frac{1}{4}a_{\text{Si}}=1.357\text{ \AA}$\\
+ $\Delta z=0.325\text{ \AA}$\\
+ \end{minipage}
+ \begin{minipage}[t]{4.2cm}
+ \underline{{\bf Expected} final configuration}\\
+ \includegraphics[width=4cm]{c_100_mig/final.eps}\\
+ \end{minipage}
+ \begin{minipage}{6cm}
+ \begin{itemize}
+  \item Fix border atoms of the simulation cell
+  \item Constraints and displacement of the C atom:
+        \begin{itemize}
+         \item along {\color{green}110 direction}\\
+               displaced by {\color{green} $\frac{1}{10}(\Delta x,\Delta y)$}
+         \item C atom {\color{red}entirely fixed in position}\\
+               displaced by
+               {\color{red}$\frac{1}{10}(\Delta x,\Delta y,\Delta z)$}
+        \end{itemize}
+ \end{itemize}
+ {\bf\color{blue}Expected configuration not obtained!}
+ \end{minipage}
+ \begin{minipage}{0.5cm}
+ \hfill
+ \end{minipage}
+ \begin{minipage}{6cm}
+ \includegraphics[width=6.0cm]{c_100_110mig_01_albe.ps}
+ \end{minipage}
+
 
 \end{slide}
 
 
 \end{slide}