rough finish of inc temp sims
[lectures/latex.git] / posic / thesis / md.tex
index c267178..d82defc 100644 (file)
@@ -339,13 +339,66 @@ The continuous dashed line corresponds to the distance of a substitutional C wit
 By comparison with the radial distribution it becomes evident that the shift accompanies the advancing transformation of \hkl<1 0 0> dumbbells into substitutional C.
 Next to combinations of two substitutional C atoms and two \hkl<1 0 0> dumbbells respectively also combinations of \hkl<1 0 0> dumbbells with a substitutional C atom arise.
 In addition, structures form that result in distances residing inbetween the ones obtained from combinations of mixed defect types and the ones obtained by substitutional C configurations, as can be seen by quite high g(r) values to the right of the continuous dashed line and to the left of the first arrow with a solid line.
-For the most part these structures can be identified as configurations of one substitutional C atom with either another C atom that basically occupies a Si lattice with a Si interstitial residing in the very next surrounding or a C atom that nearly occupies a Si lattice site forming a defect other than the \hkl<1 0 0>-type with the Si atom.
-Again, this is a quite promising result since the ...
-Both cases ...
-Might be due to other defects compensatig strain by pushing them together.
-Actually promising result, since the structure is right and even the lengthes begin to compare.
-Structures with 3 C which are right in place are observable.
-Hmm ... foo.
+For the most part these structures can be identified as configurations of one substitutional C atom with either another C atom that practically occupies a Si lattice site but with a Si interstitial residing in the very next surrounding or a C atom that nearly occupies a Si lattice site forming a defect other than the \hkl<1 0 0>-type with the Si atom.
+Again, this is a quite promising result, since the C atoms are taking the appropriate coordination as expected in 3C-SiC.
+However, this is contrary to the initial precipitation model proposed in section \ref{section:assumed_prec}, which assumes that the transformation into 3C-SiC takes place in a very last step once enough C-Si dumbbells agglomerated.
+
+{\color{red}Todo: Summarize again! Mention, that the agglomeration necessary in order to form 3C-SiC is missing.}
+
+\begin{figure}[!ht]
+\begin{center}
+\includegraphics[width=12cm]{12_pc_thesis.ps}\\
+\includegraphics[width=12cm]{12_pc_c_thesis.ps}
+\end{center}
+\caption[Si-C and C-C radial distribution for the high concentration simulations at different elevated temperatures.]{Si-C (top) and C-C (bottom) radial distribution for the high concentration simulations at different elevated temperatures. All structures are cooled down to $20\,^{\circ}\mathrm{C}$.}
+\label{fig:md:12_pc}
+\end{figure}
+Figure \ref{fig:md:12_pc} displays the radial distribution for Si-C and C-C pairs obtained from high C concentration simulations at different elevated temperatures.
+Again, in both cases, the cut-off artifact decreases with increasing temperature.
+Peaks that already exist for the low temperature simulations get slightly more distinct for elevated temperatures.
+This is also true for peaks located past distances of next neighbours indicating an increase for the long range order.
+However this change is rather small and no significant structural change is observeable.
+Due to the continuity of high amounts of damage investigations of atomic configurations below remain hard to identify even for the highest temperature.
+Other than in the low concentration simulations analyzed defect structures are no longer necessarily aligned to the primarily existing but succesively disappearing c-Si host matrix inhibiting or at least hampering their identification and classification.
+As for low temperatures order in the short range exists decreasing with increasing distance.
+The increase of the amount of Si-C pairs at 0.186 nm could be positively interpreted since this type of bond also exists in 3C-SiC.
+On the other hand the amount of next neighboured C atoms with a distance of approximately 0.15 nm, which is the distance of C in graphite or diamond, is likewise increased.
+Thus, higher temperatures seem to additionally enhance a conflictive process, that is the formation of C agglomerates, instead of the desired process of 3C-SiC formation.
+This is supported by the C-C peak at 0.252 nm, which corresponds to the second next neighbour distance in the diamond structure of elemental C.
+Investigating the atomic data indeed reveals two C atoms which are bound to and interconnect by a third C atom to be responsible for this distance.
+The C-C peak at about 0.31 nm, wich is slightly shifted to higher distances (0.317 nm) with increasing temperature still corresponds quite well to the next neighbour distance of C in 3C-SiC as well as a-SiC and indeed results from C-Si-C bonds.
+The Si-C peak at 0.282 nm, which is pronounced with increasing temperature is constructed out of a Si atom and a C atom, which are both bound to another central C atom.
+This is similar for the Si-C peak at approximately 0.35 nm.
+In this case, the Si and the C atom are bound to a central Si atom.
+
+Regarding these findings there is a clear evidence of the formation of an amorphous SiC-like phase for all high concentration simulations performed at various temperatures.
+No significant structural change is observed for elevated temperatures.
+However, with the disappearance of the peaks at the respective cut-off radii one limitation of the short range potential seems to be accomplished.
+In addition, sharper peaks in the radial distributions at distances that are also expected for a-SiC might indicate a slight acceleration of the dynamics carried out at elevated temperatures, that is an expeditious formation of a structure superiorly compareable to a-SiC.
+The increase in temperature leads to the occupation of new defect states, which is particularly evident for low carbon concentrations.
+The question remains whether these states are only occupied due to the additional supply of kinetic energy and, thus, have to be considered unnatural for temperatures applied in IBS or whether the increase in temperature indeed enabled infrequent transitions to occur much faster, thus, leading to the intended acceleration of the dynamics and weakening of the unphysical quirks inherent to the potential.
+{\color{red}Todo: Formation energy of C sub and nearby Si self-int, to see whether this is a preferable state!}
+In the first case these occupied states would be expected to be higher in energy than the states occupied at low temperatures.
+Since substitutional C without the presence of a Si self-interstitial is energetically more favorable than the lowest defect structure obtained without removing a Si atom, that is the \hkl<1 0 0> dumbbell interstitial, and the migration of Si self-interstitials towards the sample surface can be assumed for real life experiments \cite{}, this approach is accepted as an accelerated way of approximatively describing the structural evolution.
+{\color{red}Todo: If C sub and Si self-int is energetically more favorable, the migration towards the surface can be kicked out. Otherwise we should actually care about removal of Si! In any way these findings suggest a different prec model.}
+
+\begin{figure}[!ht]
+\begin{center}
+\includegraphics[width=12cm]{fe_and_t.ps}
+\end{center}
+\caption{Free energy and temperature plot of plain silicon in the region around the transition temperature.}
+\label{fig:md:fe_and_t}
+\end{figure}
+The assumed applicability as discussed above and the remaining absence of either agglomeration of substitutional C in low concentration simulations or amorphous to crystalline transition in high concentration simulations suggests to further increase the system temperature.
+So far, the highest temperature applied corresponds to 95 \% of the absolute silicon melting temperature, which is 2450 K and specific to the Erhard/Albe potential.
+However, melting is not predicted to occur instantly after exceeding the melting point due to additionally required transition enthalpy and hysteresis behaviour.
+To check for the possibly highest temperature at which a transition fails to appear plain silicon is heated up using a heating rate of $1\,^{\circ}\mathrm{C}/\text{ps}$.
+Figure \ref{fig:md:fe_and_t} shows the free energy and temperature evolution in the region around the transition temperature.
+Indeed a transition and the accompanying critical behaviour of the free energy is first observed at approximately 3125 K, which corresponds to 128 \% of the silicon melting temperature.
+The difference in free energy is 0.58 eV per atom corresponding to $55.7 \text{ kJ/mole}$, which compares quite well to the silicon enthalpy of melting of $50.2 \text{ kJ/mole}$.
+The late transition probably occurs due to the high heating rate and, thus, a large hysteresis behaviour extending the temperature of transition.
+To avoid melting transitions in further simulations system temperatures well below the transition point are considered safe.
+Thus, in the following system temperatures of 100 \% and 120 \% of the silicon melting point are used.
 
 \subsection{Constructed 3C-SiC precipitate in crystalline silicon}