\begin{slide}
{\large\bf
- Motivation / Introduction
+ Supposed Si to 3C-SiC conversion
}
\small
\begin{minipage}[t]{4.3cm}
\underline{Tetrahedral}\\
- $E_f=3.41\, eV$\\
+ $E_f=3.41$ eV\\
\includegraphics[width=3.8cm]{si_self_int_tetra_0.eps}
\end{minipage}
\begin{minipage}[t]{4.3cm}
\underline{110 dumbbell}\\
- $E_f=4.39\, eV$\\
+ $E_f=4.39$ eV\\
\includegraphics[width=3.8cm]{si_self_int_dumbbell_0.eps}
\end{minipage}
\begin{minipage}[t]{4.3cm}
\underline{Hexagonal} \hspace{4pt}
\href{../video/si_self_int_hexa.avi}{$\rhd$}\\
- $E_f^{\star}\approx4.48\, eV$ (unstable!)\\
+ $E_f^{\star}\approx4.48$ eV (unstable!)\\
\includegraphics[width=3.8cm]{si_self_int_hexa_0.eps}
\end{minipage}
\underline{Random insertion}
\begin{minipage}{4.3cm}
- $E_f=3.97\, eV$\\
+ $E_f=3.97$ eV\\
\includegraphics[width=3.8cm]{si_self_int_rand_397_0.eps}
\end{minipage}
\begin{minipage}{4.3cm}
- $E_f=3.75\, eV$\\
+ $E_f=3.75$ eV\\
\includegraphics[width=3.8cm]{si_self_int_rand_375_0.eps}
\end{minipage}
\begin{minipage}{4.3cm}
- $E_f=3.56\, eV$\\
+ $E_f=3.56$ eV\\
\includegraphics[width=3.8cm]{si_self_int_rand_356_0.eps}
\end{minipage}
\begin{minipage}[t]{4.3cm}
\underline{Tetrahedral}\\
- $E_f=2.67\, eV$\\
+ $E_f=2.67$ eV\\
\includegraphics[width=3.8cm]{c_in_si_int_tetra_0.eps}
\end{minipage}
\begin{minipage}[t]{4.3cm}
\underline{110 dumbbell}\\
- $E_f=1.76\, eV$\\
+ $E_f=1.76$ eV\\
\includegraphics[width=3.8cm]{c_in_si_int_dumbbell_0.eps}
\end{minipage}
\begin{minipage}[t]{4.3cm}
\underline{Hexagonal} \hspace{4pt}
\href{../video/c_in_si_int_hexa.avi}{$\rhd$}\\
- $E_f^{\star}\approx5.6\, eV$ (unstable!)\\
+ $E_f^{\star}\approx5.6$ eV (unstable!)\\
\includegraphics[width=3.8cm]{c_in_si_int_hexa_0.eps}
\end{minipage}
\footnotesize
\begin{minipage}[t]{3.3cm}
- $E_f=0.47\, eV$\\
+ $E_f=0.47$ eV\\
\includegraphics[width=3.3cm]{c_in_si_int_001db_0.eps}
\begin{picture}(0,0)(-15,-3)
- 001 dumbbell
+ 100 dumbbell
\end{picture}
\end{minipage}
\begin{minipage}[t]{3.3cm}
- $E_f=1.62\, eV$\\
+ $E_f=1.62$ eV\\
\includegraphics[width=3.2cm]{c_in_si_int_rand_162_0.eps}
\end{minipage}
\begin{minipage}[t]{3.3cm}
- $E_f=2.39\, eV$\\
+ $E_f=2.39$ eV\\
\includegraphics[width=3.1cm]{c_in_si_int_rand_239_0.eps}
\end{minipage}
\begin{minipage}[t]{3.0cm}
- $E_f=3.41\, eV$\\
+ $E_f=3.41$ eV\\
\includegraphics[width=3.3cm]{c_in_si_int_rand_341_0.eps}
\end{minipage}
\end{slide}
+\begin{slide}
+
+ {\large\bf
+ Results
+ } - <100> dumbbell configuration
+
+ \vspace{8pt}
+
+ \small
+
+ \begin{minipage}{4cm}
+ \begin{itemize}
+ \item $E_f=0.47$ eV
+ \item Very often observed
+ \item Most energetically\\
+ favorable configuration
+ \item Experimental\\
+ evidence [6]
+ \end{itemize}
+ \vspace{24pt}
+ {\tiny
+ [6] G. D. Watkins and K. L. Brower,\\
+ Phys. Rev. Lett. 36 (1976) 1329.
+ }
+ \end{minipage}
+ \begin{minipage}{8cm}
+ \includegraphics[width=9cm]{100-c-si-db_s.eps}
+ \end{minipage}
+
+\end{slide}
+
\begin{slide}
{\large\bf
Results
} - SiC precipitation runs
- \footnotesize
- \begin{minipage}[b]{6.9cm}
- \includegraphics[width=6.3cm]{../plot/sic_prec_energy.ps}
- \includegraphics[width=6.3cm]{../plot/sic_prec_temp.ps}
+ \includegraphics[width=6.3cm]{pc_si-c_c-c.eps}
+ \includegraphics[width=6.3cm]{pc_si-si.eps}
+
+ \begin{minipage}[t]{6.3cm}
+ \tiny
+ \begin{itemize}
+ \item C-C peak at 0.15 nm similar to next neighbour distance of graphite
+ or diamond\\
+ $\Rightarrow$ Formation of strong C-C bonds
+ (almost only for high C concentrations)
+ \item Si-C peak at 0.19 nm similar to next neighbour distance in 3C-SiC
+ \item C-C peak at 0.31 nm equals C-C distance in 3C-SiC\\
+ (due to concatenated, differently oriented
+ <100> dumbbell interstitials)
+ \item Si-Si shows non-zero g(r) values around 0.31 nm like in 3C-SiC\\
+ and a decrease at regular distances\\
+ (no clear peak,
+ interval of enhanced g(r) corresponds to C-C peak width)
+ \end{itemize}
\end{minipage}
- \begin{minipage}[b]{5.5cm}
- \begin{itemize}
- \item {\color{red} Total simulation volume}
- \item {\color{green} Volume of minimal SiC precipitation}
- \item {\color{blue} Volume of necessary amount of Si}
- \end{itemize}
- \vspace{40pt}
- \includegraphics[width=6.3cm]{../plot/foo150.ps}
+ \begin{minipage}[t]{6.3cm}
+ \tiny
+ \begin{itemize}
+ \item Low C concentration (i.e. $V_1$):
+ The <100> dumbbell configuration
+ \begin{itemize}
+ \item is identified to stretch the Si-Si next neighbour distance
+ to 0.3 nm
+ \item is identified to contribute to the Si-C peak at 0.19 nm
+ \item explains further C-Si peaks (dashed vertical lines)
+ \end{itemize}
+ $\Rightarrow$ C atoms are first elements arranged at distances
+ expected for 3C-SiC\\
+ $\Rightarrow$ C atoms pull the Si atoms into the right
+ configuration at a later stage
+ \item High C concentration (i.e. $V_2$ and $V_3$):
+ \begin{itemize}
+ \item High amount of damage introduced into the system
+ \item Short range order observed but almost no long range order
+ \end{itemize}
+ $\Rightarrow$ Start of amorphous SiC-like phase formation\\
+ $\Rightarrow$ Higher temperatures required for proper SiC formation
+ \end{itemize}
\end{minipage}
\end{slide}