-\]
- \item \underline{Kohn-Sham system}
- - Schr\"odinger equation of N non-interacting particles
-\[
-\left[ -\frac{\hbar^2}{2m}\nabla^2 + V_{\text{eff}}(r) \right] \Phi_i(r)
-=\epsilon_i\Phi_i(r)
-\quad
-\Rightarrow
-\quad
-n(r)=\sum_i^N|\Phi_i(r)|^2
-\]
- \item \underline{Self-consistent solution}\\
-$n(r)$ depends on $\Phi_i$, which depend on $V_{\text{eff}}$,
-which in turn depends on $n(r)$
- \item \underline{Variational principle}
- - minimize total energy with respect to $n(r)$
- \end{itemize}
-
-\end{slide}
-
-\begin{slide}
-
- {\large\bf
- Density functional theory (DFT) calculations
- }
-
- \small
-
- \vspace*{0.2cm}
-
- Details of applied DFT calculations in this work
-
- \begin{itemize}
- \item \underline{Exchange correlation functional}
- - approximations for the inhomogeneous electron gas
- \begin{itemize}
- \item LDA: $E_{\text{XC}}^{\text{LDA}}[n]=\int \epsilon_{\text{XC}}(n)n(r)d^3r$
- \item GGA: $E_{\text{XC}}^{\text{GGA}}[n]=\int \epsilon_{\text{XC}}(n,\nabla n)n(r)d^3r$
- \end{itemize}
- \item \underline{Plane wave basis set}
- - approximation of the wavefunction $\Phi_i$ by plane waves $\phi_j$
- \item \underline{Brillouin zone sampling} -
- {\color{blue}$\Gamma$-point only} calculations
- \item \underline{Pseudo potential}
- - consider only the valence electrons
- \item \underline{Code} - VASP 4.6
- \end{itemize}
-
- \vspace*{0.2cm}
-
- MD and structural optimization
-
- \begin{itemize}
- \item MD integration: Gear predictor corrector algorithm
- \item Pressure control: Parrinello-Rahman pressure control
- \item Structural optimization: Conjugate gradient method
- \end{itemize}
+$
+}}
+\psarcn[linewidth=0.07cm,linestyle=dashed]{->}(3.5,-2.0){2.5}{130}{15}
+\psarcn[linewidth=0.07cm,linestyle=dashed]{->}(3.5,-2.0){2.5}{230}{165}
+\psarcn[linewidth=0.07cm,linestyle=dashed]{->}(3.5,-2.0){2.5}{345}{310}