\item Calculation of cohesive energies for different lattice constants
\item No ionic update
\item Tetrahedron method with Blöchl corrections for
- the partial occupancies $f_{nk}$
+ the partial occupancies $f(\{\epsilon_{n{\bf k}}\})$
\item Supercell 3 (8 atoms, 4 primitive cells)
\end{itemize}
\vspace*{0.6cm}
\item Calculation of cohesive energies for different lattice constants
\item No ionic update
\item Tetrahedron method with Blöchl corrections for
- the partial occupancies $f_{nk}$
+ the partial occupancies $f(\{\epsilon_{n{\bf k}}\})$
\end{itemize}
\vspace*{0.6cm}
\begin{minipage}{6.5cm}
\begin{center}
{\color{red}
Non-continuous energies\\
- for $E_{\textrm{cut-off}}<1050\,\textrm{eV}$!
+ for $E_{\textrm{cut-off}}<1050\,\textrm{eV}$!\\
+ }
+ \vspace*{0.5cm}
+ {\footnotesize
+ Does this matter in structural optimizaton simulations?
+ \begin{itemize}
+ \item Derivative might be continuous
+ \item Similar lattice constants where derivative equals zero
+ \end{itemize}
}
\end{center}
\end{minipage}
\item Spin polarized calculation
\item Interpolation formula according to Vosko Wilk and Nusair
for the correlation part of the exchange correlation functional
- \item Gaussian smearing for the partial occupancies $f_{nk}$
+ \item Gaussian smearing for the partial occupancies
+ $f(\{\epsilon_{n{\bf k}}\})$
($\sigma=0.05$)
\item Magnetic mixing: AMIX = 0.2, BMIX = 0.0001
\item Supercell: one atom in cubic
$10\times 10\times 10$ \AA$^3$ box
\end{itemize}
{\color{blue}
- $E_{\textrm{free,sp}}(\textrm{Si},250\, \textrm{eV})=
+ $E_{\textrm{free,sp}}(\textrm{Si},{\color{green}250}\, \textrm{eV})=
-0.70036911\,\textrm{eV}$
+ }\\
+ {\color{blue}
+ $E_{\textrm{free,sp}}(\textrm{Si},{\color{red}650}\, \textrm{eV})=
+ -0.70021403\,\textrm{eV}$
},
{\color{gray}
- $E_{\textrm{free,sp}}(\textrm{C},xxx\, \textrm{eV})=
- yyy\,\textrm{eV}$
+ $E_{\textrm{free,sp}}(\textrm{C},{\color{red}650}\, \textrm{eV})=
+ -1.3535731\,\textrm{eV}$
}
\item $E$:
energy (non-polarized) of system of interest composed of\\
n atoms of type N, m atoms of type M, \ldots
\end{itemize}
- \vspace*{0.3cm}
+ \vspace*{0.2cm}
{\color{red}
\[
\Rightarrow
\includegraphics[width=7.0cm]{si_self_int.ps}
\end{minipage}
\begin{minipage}{5cm}
- $E_{\textrm{f}}^{\textrm{110},\,32\textrm{pc}}=3.38\textrm{ eV}$\\
- $E_{\textrm{f}}^{\textrm{tet},\,32\textrm{pc}}=3.41\textrm{ eV}$\\
- $E_{\textrm{f}}^{\textrm{hex},\,32\textrm{pc}}=3.42\textrm{ eV}$\\
- $E_{\textrm{f}}^{\textrm{vac},\,32\textrm{pc}}=3.51\textrm{ eV}$
+ $E_{\textrm{f}}^{\textrm{110},\,{\color{red}32}\textrm{pc}}=3.38\textrm{ eV}$\\
+ $E_{\textrm{f}}^{\textrm{hex},\,54\textrm{pc}}=3.42\textrm{ eV}$\\
+ $E_{\textrm{f}}^{\textrm{tet},\,54\textrm{pc}}=3.45\textrm{ eV}$\\
+ $E_{\textrm{f}}^{\textrm{vac},\,54\textrm{pc}}=3.47\textrm{ eV}$
\end{minipage}
\end{slide}
\item hence also connected to choice of smearing method?
\item constraints can only be applied to the lattice vectors!
\end{itemize}
+ \item Use of real space projection operators?
\item \ldots
\end{itemize}
Review (so far) ...\\
}
-
-
+ Smearing method for the partial occupancies $f(\{\epsilon_{n{\bf k}}\})$
+ and $k$-point mesh
+
+ \begin{itemize}
+ \item $1\times 1\times 1$ Type 0 simulations
+ \begin{itemize}
+ \item No difference in tetrahedron method and Gauss smearing
+ \item ...
+ \end{itemize}
+ \item $1\times 1\times 1$ Type 2 simulations
+ \begin{itemize}
+ \item Again, no difference in tetrahedron method and Gauss smearing
+ \item ...
+ \end{itemize}
+ \end{itemize}
+
+ {\LARGE\bf\color{red}
+ More simulations running ...
+ }
+
+\end{slide}
+
+\begin{slide}
+
+ {\large\bf
+ Review (so far) ...\\
+ }
+
+ Symmetry (in defect simulations)
+
+ {\LARGE\bf\color{red}
+ Simulations running ...
+ }
+
+\end{slide}
+
+\begin{slide}
+
+ {\large\bf
+ Review (so far) ...\\
+ }
+
+ Real space projection
+
+\end{slide}
+
+\begin{slide}
+
+ {\large\bf
+ Review (so far) ...\\
+ }
+
+ Energy cut-off
+
+\end{slide}
+
+\begin{slide}
+
+ {\large\bf
+ Review (so far) ...\\
+ }
+
+ Size and type of supercell
+
+\end{slide}
+
+\begin{slide}
+
+ {\large\bf
+ Not answered (so far) ...\\
+ }
+
+\vspace{1.5cm}
+
+ \LARGE
+ \bf
+ \color{blue}
+
+ \begin{center}
+ Continue\\
+ with\\
+ US LDA?
+ \end{center}
+
+\vspace{1.5cm}
\end{slide}