]> hackdaworld.org Git - lectures/latex.git/commitdiff
mehr md kram, immer noch c-c und si-si
authorhackbard <hackbard@sage.physik.uni-augsburg.de>
Tue, 30 Mar 2010 17:32:07 +0000 (19:32 +0200)
committerhackbard <hackbard@sage.physik.uni-augsburg.de>
Tue, 30 Mar 2010 17:32:07 +0000 (19:32 +0200)
posic/thesis/md.tex

index fd8873de86e670d8fb2f3c0ceebedc6fd5f103aa..a35037bb7a9259dcb56cf9a784386482264ce7cc 100644 (file)
@@ -26,25 +26,23 @@ The number of carbon atoms $N_{\text{Carbon}}$ necessary to form a spherical pre
 \label{eq:md:spheric_prec}
 \end{equation}
 with $a_{\text{SiC}}$ being the lattice constant of 3C-SiC.
-A total amount of 6000 carbon atoms corresponds to a radius of approximately 3 nm, which is discovered to be the minimal size for precipitates in IBS experiments.
+In IBS experiments the smallest precipitates observed have radii starting from 2 nm up to 4 nm.
+For the initial simulations a total amount of 6000 carbon atoms corresponding to a radius of approximately 3.1 nm is chosen.
 In separated simulations these 6000 carbon atoms are inserted in three regions of different volume ($V_1$, $V_2$, $V_3$) within the simulation cell.
 For reasons of simplification these regions are rectangularly shaped.
 $V_1$ is chosen to be the total simulation volume.
 $V_2$ approximately corresponds to the volume of a minimal 3C-SiC precipitate.
 $V_3$ is approximately the volume containing the necessary amount of silicon atoms to form such a precipitate, which is slightly smaller than $V_2$ due to the slightly lower silicon density of 3C-SiC compared to c-Si.
-The two latter insertion volumes are considered since no diffusion of carbon atoms is expected at this temperature.
+The two latter insertion volumes are considered since no diffusion of carbon atoms is expected within the simulated period of time at prevalent temperatures.
 {\color{red}Todo: Refere to diffusion simulations and Mattoni paper.}
 For rectangularly shaped precipitates with side length $L$ the amount of carbon atoms in 3C-SiC and silicon atoms in c-Si is given by
 \begin{equation}
  N_{\text{Carbon}}^{\text{3C-SiC}} =4 \left( \frac{L}{a_{\text{SiC}}}\right)^3
-\label{eq:md:quadratic_prec}
-\end{equation}
-and 
-\begin{equation}
+ \text{ and} \quad
  N_{\text{Silicon}}^{\text{c-Si}} =8 \left( \frac{L}{a_{\text{Si}}}\right)^3 \text{ .}
-\label{eq:md:quadratic_prec2}
+\label{eq:md:n_prec}
 \end{equation}
-Table \ref{table:md:ins_vols} summarizes the side length of each of the three different insertion volumes determined by equations \eqref{eq:md:quadratic_prec} and \eqref{eq:md:quadratic_prec2} and the resulting carbon concentrations inside these volumes with possible carbon diffusion being neglected.
+Table \ref{table:md:ins_vols} summarizes the side length of each of the three different insertion volumes determined by equations \eqref{eq:md:n_prec} and the resulting carbon concentrations inside these volumes.
 Looking at the carbon concentrations simulations can be distinguished in simulations occupying low ($V_1$) and high ($V_2$, $V_3$) concentrations of carbon.
 \begin{table}
 \begin{center}
@@ -146,36 +144,54 @@ Figure \ref{fig:md:prec_fc} displays a flow chart of the applied steps involved
 \label{fig:md:prec_fc}
 \end{figure}
 
-The radial distribution function $g(r)$ for Si-C and C-C distances is shown in figure \ref{fig:md:pc_si-si_c-c}.
+The radial distribution function $g(r)$ for C-C and Si-Si distances is shown in figure \ref{fig:md:pc_si-si_c-c}.
 \begin{figure}[!ht]
 \begin{center}
- \includegraphics[width=12cm]{pc_si-c_c-c_thesis.ps}
+ \includegraphics[width=12cm]{sic_prec_450_si-si_c-c.ps}
 \end{center}
-\caption{Radial distribution function of the Si-C and C-C distances for 6000 carbon atoms inserted into the three different volumes $V_1$, $V_2$ and $V_3$ at a temperature of $450\,^{\circ}\mathrm{C}$.}
+\caption[Radial distribution function of the C-C and Si-Si distances for 6000 carbon atoms inserted into the three different volumes $V_1$, $V_2$ and $V_3$ at a temperature of $450\,^{\circ}\mathrm{C}$ and cooled down to room temperature.]{Radial distribution function of the C-C and Si-Si distances for 6000 carbon atoms inserted into the three different volumes $V_1$, $V_2$ and $V_3$ at a temperature of $450\,^{\circ}\mathrm{C}$ and cooled down to room temperature. The bright blue graph shows the Si-Si radial distribution for pure c-Si. The insets show magnified regions of the respective type of bond.}
 \label{fig:md:pc_si-si_c-c}
 \end{figure}
-It is easily and instantly visible that there is no significant difference among the two simulations of high carbon concentration in the $V_2$ and $V_3$ volumes.
-
+\begin{figure}[!ht]
+\begin{center}
+ \includegraphics[width=12cm]{sic_prec_450_energy.ps}
+\end{center}
+\caption[Total energy per atom as a function of time for the whole simulation sequence and for all three types of insertion volumes.]{Total energy per atom as a function of time for the whole simulation sequence and for all three types of insertion volumes. Arrows mark the end of carbon insertion and the start of the cooling process respectively.}
+\label{fig:md:energy_450}
+\end{figure}
+It is easily and instantly visible that there is no significant difference among the two simulations of high carbon concentration.
 The first C-C peak appears at about 0.15 nm, which is compareable to the nearest neighbour distance of graphite or diamond.
 The number of C-C bonds is much smaller for $V_1$ than for $V_2$ and $V_3$ since carbon atoms are spread over the total simulation volume.
 These carbon atoms are assumed to form strong bonds.
 This is supported by figure \ref{fig:md:energy_450} displaying the total energy of all three simulations during the whole simulation sequence.
-{\color{red}Todo: Add figure and check continue for 100 fs!}
 A huge decrease of the total energy during carbon insertion is observed for the simulations with high carbon concentration in contrast to the $V_1$ simulation, which shows a slight increase.
+The difference in energy $\Delta$ growing within the carbon insertion process persists unchanged until the end of the simulation.
 Here is the problem.
-Hard to break this bonds again, which is necessary for the 3C-SiC conversion.
+The excess amount of next neighboured strongly bounded C-C bonds in the high concentration simulations make these configurations energetically more favorable compared to the low concentration configuration.
+However, in the same way a lot of energy is needed to break these bonds to get out of the local energy minimum advancing towards the global minimum configuration.
+Thus, this transformation is very unlikely to happen.
 
 The C-C peak at about 0.31 nm perfectly matches the nearest neighbour distance of two carbon atoms in the 3C-SiC lattice.
+As can be seen from the inset this peak is also observed for the $V_1$ simulation.
 In 3C-SiC the same distance is also expected for nearest neighbour silicon atoms.
-Figure \ref{fig:md:si-si_450} shows the radial distribution of Si-Si bonds together with a reference graph for pure c-Si.
+The bottom of figure \ref{fig:md:pc_si-si_c-c} shows the radial distribution of Si-Si bonds together with a reference graph for pure c-Si.
 Indeed non-zero $g(r)$ values around 0.31 nm are observed while the amount of Si pairs at regular c-Si distances of 0.24 nm and 0.38 nm decreases.
 However, no clear peak is observed but the interval of enhanced $g(r)$ values corresponds to the width of the C-C $g(r)$ peak.
-For low concentrations of carbon, that is the $V_1$ simulation and early stages of the $V_2$ and $V_3$ simulations, analyses of configurations in which Si-Si distances around 0.3 nm appear and which are identifiable despite a high amount of disorder, which is especially observed in high concentration simulations, identify the \hkl<1 0 0> C-Si dumbbell to be responsible for stretching the Si-Si next neighbour distance.
+In addition the abrupt increase of Si pairs at 0.29 nm can be attributed to the Si-Si cut-off radius of 0.296 nm as used in the present bond order potential.
+The cut-off function causes artificial forces pushing the Si atoms out of the cut-off region.
+Without the abrubt increase a maximum around 0.31 nm gets even more conceivable.
+For low concentrations of carbon, that is the $V_1$ simulation and early stages of the $V_2$ and $V_3$ simulations, analyses of configurations in which Si-Si distances around 0.3 nm appear and which are identifiable in regions of high disorder, which especially applies for the high concentration simulations, identify the \hkl<1 0 0> C-Si dumbbell to be responsible for stretching the Si-Si next neighbour distance.
 This excellently agrees with the calculated value $r(13)$ in table \ref{tab:defects:100db_cmp} for a resulting Si-Si distance in the \hkl<1 0 0> C-Si dumbbell configuration.
 
+\subsection{Increased temperature simulations}
 
+It is not only the C-C bonds which seem to be unbreakable.
+Also the C-Si pairs, as observed in the low concentration simulations, are stuck.
+This can be seen from the horizontal progress of the total energy graph in the continue-step.
+Higher time periods or alternatively higher temperatures to spped up the simulation are needed.
+{\color{red}Todo: Read again about the accelerated dynamics methods and maybe explain a bit more here.}
 
-\subsection{Increased temperature simulations}
+\subsection{Simulations at temperatures exceeding the silicon melting point}
 
-\subsection{Simulations close to the silicon melting point}
+LL Cool J is hot as hell!