Utilized computational methods
}
- \vspace{0.1cm}
+\vspace{0.2cm}
- \small
+\small
-{\bf Molecular dynamics (MD):}\\
+{\bf Molecular dynamics (MD)}\\
\scriptsize
-\begin{tabular}{p{5cm}|p{7cm}}
-\hline
+\begin{tabular}{p{4.5cm} p{7.5cm}}
+%\hline
Basics & Details\\
\hline
-Microscopic description of N particle system & \\
-\multicolumn{2}{c}{}\\
-Numerical integration using Newtons equation of motion as a propagation rule in 6N-dimensional phase space & Velocity Verlet | timestep: \unit[1]{fs} \\
-\multicolumn{2}{c}{}\\
-Analytical interaction potential & Tersoff-like bond order potential (Erhart/Albe) \\
-\multicolumn{2}{c}{}\\
-Observables obtained by time and/or ensemble averages & NpT (isothermal-isobaric)\\
+System of $N$ particles &
+$N=5832\pm 1$ (Defects), $N=238328+6000$ (Precipitation)\\
+\hline
+Phase space propagation &
+Velocity Verlet | timestep: \unit[1]{fs} \\
+\hline
+Analytical interaction potential &
+Tersoff-like {\color{red}short-range}, {\color{blue}bond order} potential
+(Erhart/Albe)
+$\displaystyle
+E = \frac{1}{2} \sum_{i \neq j} \pot_{ij}, \quad
+ \pot_{ij} = {\color{red}f_C(r_{ij})}
+ \left[ f_R(r_{ij}) + {\color{blue}b_{ij}} f_A(r_{ij}) \right]
+$\\
+\hline
+%\multicolumn{2}{c}{}\\
+Observables: time/ensemble averages &
+NpT (isothermal-isobaric) | Berendsen thermostat/barostat\\
%\begin{itemize}
%\item Berendsen thermostat:
% $\tau_{\text{T}}=100\text{ fs}$
\hline
\end{tabular}
- \begin{itemize}
- \item Microscopic description of N particle system
- \item Analytical interaction potential
- \item Numerical integration using Newtons equation of motion\\
- as a propagation rule in 6N-dimensional phase space
- \item Observables obtained by time and/or ensemble averages
- \end{itemize}
- {\bf Details of the simulation:}
- \begin{itemize}
- \item Integration: Velocity Verlet, timestep: $1\text{ fs}$
- \item Ensemble: NpT (isothermal-isobaric)
- \begin{itemize}
- \item Berendsen thermostat:
- $\tau_{\text{T}}=100\text{ fs}$
- \item Berendsen barostat:\\
- $\tau_{\text{P}}=100\text{ fs}$,
- $\beta^{-1}=100\text{ GPa}$
- \end{itemize}
- \item Erhart/Albe potential: Tersoff-like bond order potential
- \vspace*{12pt}
- \[
- E = \frac{1}{2} \sum_{i \neq j} \pot_{ij}, \quad
- \pot_{ij} = {\color{red}f_C(r_{ij})}
- \left[ f_R(r_{ij}) + {\color{blue}b_{ij}} f_A(r_{ij}) \right]
- \]
- \end{itemize}
+\small
+
+\vspace{0.1cm}
+
+{\bf Density functional theory (DFT)}
+
+\scriptsize
+
+\begin{minipage}[t]{6cm}
+\underline{Basics}
+\begin{itemize}
+ \item Born-Oppenheimer approximation:\\
+ Decouple electronic \& ionic motion
+ \item Hohenberg-Kohn theorem:\\
+ $n_0(r) \stackrel{\text{uniquely}}{\rightarrow}$
+ $V_0$ / $H$ / $\Phi_i$ / \underline{$E_0$}
+\end{itemize}
+\underline{Details}
+\begin{itemize}
+\item Code: \textsc{vasp}
+\item Plane wave basis set $\{\phi_j\}$\\[0.1cm]
+$\displaystyle
+\Phi_i=\sum_{|G+k|<G_{\text{cut}}} c_j^i \phi_j(r)
+$\\
+$\displaystyle
+E_{\text{cut}}=\frac{\hbar^2}{2m}G^2_{\text{cut}}=\unit[300]{eV}
+$
+\item Ultrasoft pseudopotential
+\item Brillouin zone sampling: $\Gamma$-point
+\end{itemize}
+\end{minipage}
+\begin{minipage}[t]{6cm}
+\end{minipage}
- \begin{picture}(0,0)(-230,-30)
- \includegraphics[width=5cm]{tersoff_angle.eps}
- \end{picture}
-
\end{slide}
\end{document}
\begin{slide}
+ \small
{\large\bf
Density functional theory (DFT) calculations
}
- \small
-
Basic ingredients necessary for DFT
\begin{itemize}
\end{itemize}
\item \underline{Plane wave basis set}
- approximation of the wavefunction $\Phi_i$ by plane waves $\phi_j$
-\[
-\rightarrow
-\text{Fourier series: } \Phi_i=\sum_{|G+k|<G_{\text{cut}}} c_j^i \phi_j(r), \quad E_{\text{cut}}=\frac{\hbar^2}{2m}G^2_{\text{cut}}
-\qquad ({\color{blue}300\text{ eV}})
-\]
\item \underline{Brillouin zone sampling} -
{\color{blue}$\Gamma$-point only} calculations
\item \underline{Pseudo potential}