]> hackdaworld.org Git - lectures/latex.git/commitdiff
started with 110 - x mig (albe)
authorhackbard <hackbard@sage.physik.uni-augsburg.de>
Tue, 1 Jun 2010 15:22:27 +0000 (17:22 +0200)
committerhackbard <hackbard@sage.physik.uni-augsburg.de>
Tue, 1 Jun 2010 15:22:27 +0000 (17:22 +0200)
posic/thesis/defects.tex

index c739087a3d24b5dc60054a4f14c651080ff2ab96..d7f3052d28a2b75092f500d6c85302b07560d6b3 100644 (file)
@@ -723,35 +723,53 @@ However, in some cases  a time constant of 100 fs resuls in lower barriers and,
 
 \begin{figure}[th!]
 \begin{center}
-\includegraphics[width=13cm]{bc_00-1.ps}\\[1.8cm]
+\includegraphics[width=13cm]{bc_00-1.ps}\\[5.6cm]
 \begin{pspicture}(0,0)(0,0)
-\psframe*[linecolor=blue,fillstyle=none,fillcolor=white](-8,3)(7,0)
+\psframe[linecolor=red,fillstyle=none](-7,2.7)(7.2,6)
 \end{pspicture}
-\begin{picture}(0,0)(160,0)
+\begin{picture}(0,0)(140,-100)
+\includegraphics[width=2.4cm]{albe_mig/bc_00-1_red_00.eps}
+\end{picture}
+\begin{picture}(0,0)(10,-100)
+\includegraphics[width=2.4cm]{albe_mig/bc_00-1_red_01.eps}
+\end{picture}
+\begin{picture}(0,0)(-120,-100)
+\includegraphics[width=2.4cm]{albe_mig/bc_00-1_red_02.eps}
+\end{picture}
+\begin{picture}(0,0)(25,-80)
+\includegraphics[width=2.5cm]{110_arrow.eps}
+\end{picture}
+\begin{picture}(0,0)(215,-100)
+\includegraphics[height=2.2cm]{001_arrow.eps}
+\end{picture}\\
+\begin{pspicture}(0,0)(0,0)
+\psframe[linecolor=blue,fillstyle=none](-7,-0.5)(7.2,2.8)
+\end{pspicture}
+\begin{picture}(0,0)(160,-10)
 \includegraphics[width=2.2cm]{albe_mig/bc_00-1_01.eps}
 \end{picture}
-\begin{picture}(0,0)(100,0)
+\begin{picture}(0,0)(100,-10)
 \includegraphics[width=2.2cm]{albe_mig/bc_00-1_02.eps}
 \end{picture}
-\begin{picture}(0,0)(10,0)
+\begin{picture}(0,0)(10,-10)
 \includegraphics[width=2.2cm]{albe_mig/bc_00-1_03.eps}
 \end{picture}
-\begin{picture}(0,0)(-120,0)
+\begin{picture}(0,0)(-120,-10)
 \includegraphics[width=2.2cm]{albe_mig/bc_00-1_04.eps}
 \end{picture}
-\begin{picture}(0,0)(25,20)
+\begin{picture}(0,0)(25,10)
 \includegraphics[width=2.5cm]{100_arrow.eps}
 \end{picture}
-\begin{picture}(0,0)(215,0)
+\begin{picture}(0,0)(215,-10)
 \includegraphics[height=2.2cm]{010_arrow.eps}
 \end{picture}
 \end{center}
-\caption{Migration barrier of the bond-centered to \hkl<0 0 -1> dumbbell transition using the classical Erhard/Albe potential.}
+\caption{Migration barrier and structures of the bond-centered to \hkl<0 0 -1> dumbbell transition using the classical Erhard/Albe potential.}
 \label{fig:defects:cp_bc_00-1_mig}
 % red: ./visualize -w 640 -h 480 -d saves/c_in_si_mig_bc_00-1_s20 -nll -0.56 -0.56 -0.7 -fur 0.2 0.2 0.0 -c 0.75 -1.25 -0.25 -L -0.25 -0.25 -0.25 -r 0.6 -B 0.1
 % blue: ./visualize -w 640 -h 480 -d saves/c_in_si_mig_bc_00-1_s20_tr100/ -nll -0.56 -0.56 -0.7 -fur 0.2 0.2 0.0 -c 0.0 -0.25 1.0 -L 0.0 -0.25 -0.25 -r 0.6 -B 0.1
 \end{figure}
-Figure \ref{fig:defects:cp_bc_00-1_mig} shows the migration barrier of the bond-centered to \hkl<0 0 -1> dumbbell transition.
+Figure \ref{fig:defects:cp_bc_00-1_mig} shows the migration barrier iand corresponding structures of the bond-centered to \hkl<0 0 -1> dumbbell transition.
 Since the bond-centered configuration is unstable relaxing into the \hkl<1 1 0> C-Si dumbbell interstitial configuration within this potential the low kinetic energy state is used as a starting configuration.
 Depending on the time constant activation energies of 2.4 eV and 2.2 eV respectively are obtained.
 The migration path obtained by simulations with a time constant of 1 fs remains in the \hkl(1 1 0) plane.
@@ -761,9 +779,28 @@ However, the investigated pathways cover an activation energy approximately twic
 
 \begin{figure}[th!]
 \begin{center}
-\includegraphics[width=13cm]{00-1_0-10.ps}
+\includegraphics[width=13cm]{00-1_0-10.ps}\\[2.4cm]
+\begin{pspicture}(0,0)(0,0)
+\psframe[linecolor=red,fillstyle=none](-6,-0.5)(7.2,2.8)
+\end{pspicture}
+\begin{picture}(0,0)(130,-10)
+\includegraphics[width=2.2cm]{albe_mig/00-1_0-10_red_00.eps}
+\end{picture}
+\begin{picture}(0,0)(0,-10)
+\includegraphics[width=2.2cm]{albe_mig/00-1_0-10_red_min.eps}
+\end{picture}
+\begin{picture}(0,0)(-120,-10)
+\includegraphics[width=2.2cm]{albe_mig/00-1_0-10_red_03.eps}
+\end{picture}
+\begin{picture}(0,0)(25,10)
+\includegraphics[width=2.5cm]{100_arrow.eps}
+\end{picture}
+\begin{picture}(0,0)(185,-10)
+\includegraphics[height=2.2cm]{001_arrow.eps}
+\end{picture}
 \end{center}
-\caption{Migration barrier of the \hkl<0 0 -1> to \hkl<0 -1 0> C-Si dumbbell transition using the classical Erhard/Albe potential.}
+\caption{Migration barrier and structures of the \hkl<0 0 -1> to \hkl<0 -1 0> C-Si dumbbell transition using the classical Erhard/Albe potential.}
+% red: ./visualize -w 640 -h 480 -d saves/c_in_si_mig_00-1_0-10_s20 -nll -0.56 -0.56 -0.8 -fur 0.3 0.2 0 -c -0.125 -1.7 0.7 -L -0.125 -0.25 -0.25 -r 0.6 -B 0.1
 \label{fig:defects:cp_00-1_0-10_mig}
 \end{figure}
 \begin{figure}[th!]
@@ -776,15 +813,21 @@ However, the investigated pathways cover an activation energy approximately twic
 Figure \ref{fig:defects:cp_00-1_0-10_mig} and \ref{fig:defects:cp_00-1_ip0-10_mig} show the migration barriers of \hkl<0 0 -1> to \hkl<0 -1 0> C-Si dumbbell transition, with a transition of the C atom to the neighboured lattice site in the first case and a reorientation within the same lattice site in the latter case.
 Both pathways look similar.
 A local minimum exists inbetween two peaks of the graph.
-The corresponding configuration looks similar to the \hkl<1 1 0> configuration.
+The corresponding configuration, which is illustrated for the migration simulation with a time constant of 1 fs, looks similar to the \hkl<1 1 0> configuration.
 Indeed, this configuration is obtained by relaxation simulations without constraints of configurations near the minimum.
 Activation energies of roughly 2.8 eV and 2.7 eV respectively are needed for migration.
 
+The \hkl<1 1 0> configuration seems to play a decisive role in all migration pathways.
+In the first migration path it is the configuration resulting from a further relaxation of the rather unstable bond-centered configuration, which is fixed to be a transition point.
+The last two  pathways show configurations almost identical to the \hkl<1 1 0> configuration, which constitute a local minimum within the pathway.
+Thus, migration pathways with the \hkl<1 1 0> C-Si dumbbell interstitial configuration as a starting or final configuration are further investigated.
+Figure ... shows ...
+
+
+The
 ... diffusion ...
 ... indicate a problem that is formulated and discussed in more detail in section ...
 
-Since the \hkl<1 1 0> configuration einnehmen a besondere role in all migration pathways migrations mit dieser configuration are investigated further.
-...
 
 \section{Combination of point defects}