}
& \hkl<1 1 -1> & \hkl<2 2 0> & \hkl<3 3 -1> & \hkl<4 4 0>\\
\hline
- \hkl<0 0 -1> & 6.23514\newline {\color{blue}6.23514}
- & 4.65214\newline {\color{blue}4.65014}
- & 5.97314\newline {\color{blue}5.97314}
- & 6.45514\newline {\color{blue}6.45714} \\
+ \hkl<0 0 -1> & 6.23\newline {\color{blue}6.23514}
+ & 4.65\newline {\color{blue}4.65014}
+ & 5.97\newline {\color{blue}5.97314}
+ & 6.45\newline {\color{blue}6.45714} \\
\hline
- \hkl<0 0 1> & 6.65114\newline {\color{blue}6.65114}
- & 4.78514\newline {\color{blue}4.78314}
- & 6.53614\newline {\color{blue}6.53614}
- & 6.18914\newline {\color{blue}6.18914} \\
+ \hkl<0 0 1> & 6.64\newline {\color{blue}6.65114}
+ & 4.78\newline {\color{blue}4.78314}
+ & 6.53\newline {\color{blue}6.53614}
+ & 6.18\newline {\color{blue}6.18914} \\
\hline
- \hkl<1 0 0>, \hkl<0 1 0> & 4.07014\newline alkmene
- & 4.93814
- & 5.72914
- & 6.00214\\
+ \hkl<1 0 0>, \hkl<0 1 0> & 4.06\newline alkmene
+ & 4.93
+ & 5.72
+ & 6.00\\
\hline
- \hkl<-1 0 0>, \hkl<0 -1 0> & 3.93014 & 4.43414 & 6.02814 & 6.02414 \\
+ \hkl<-1 0 0>, \hkl<0 -1 0> & 3.92 & 4.43 & 6.02 & 6.02 \\
+ \hline
+ Vacancy & ... & ... & ... & ... \\
\hline
\end{tabular}
Combination of defects
}
- \begin{tabular}{|l|l|l|l|}
+ \begin{tabular}{|l|l|l|l|l|l|}
+ \hline
+ & 2 & 3 & 4 & 5 & 6 \\
\hline
- & 2 & 3 & 4 \\
+\hkl<0 0 -1> & 6.23 & 5.16 & 6.23 & ... & 4.65\\
\hline
-\hkl<0 0 -1> & 6.23 & 5.16 & 6.23 \\
+\hkl<0 0 1> & 6.64 & 6.31 & ... & ... & 4.78 \\
\hline
-\hkl<0 0 1> & 6.64 & 6.31 & ... \\
+\hkl<1 0 0> & 4.06 & 6.13 & 6.21 & ... & 4.93 \\
\hline
-\hkl<1 0 0> & 4.06 & 6.13 & ... \\
+\hkl<-1 0 0> & \hkl<0 -1 0> & 4.41 & ... & ... & 4.43 \\
\hline
-\hkl<-1 0 0> & as \hkl<0 -1 0> & 4.41 & ... \\
+\hkl<0 1 0> & \hkl<1 0 0> & 5.95 & \hkl<-1 0 0> & \hkl<-1 0 0> & \hkl<1 0 0> \\
\hline
-\hkl<0 1 0> & as \hkl<1 0 0> & 5.95 & as \hkl<-1 0 0> \\
+\hkl<0 -1 0> & 3.92 & ... & \hkl<1 0 0> & \hkl<1 0 0> & \hkl <-1 0 0> \\
\hline
-\hkl<0 -1 0> & 3.92 & ... & as \hkl<1 0 0>\\
+Vacancy & ... & ... & ... & ... & ... \\
\hline
\end{tabular}
\end{slide}
+\begin{slide}
+
+ {\large\bf
+ Reminder (just for me to keep in mind ...)
+ }
+
+ \scriptsize
+
+ \underline{Volume of the MD cell}
+ \begin{itemize}
+ \item $T=900\text{ K}$
+ \item $\alpha=2.0 \cdot 10^{-6}\text{ K}^{-1}$
+ \item $a = a_0(1+\alpha \Delta T)$
+ \item Plain Si$(T=0)$: $a_0=5.4575\text{ \AA}$
+ $\rightarrow a(900\text{ K})=5.4674\text{ \AA}$
+ \item C \hkl<1 0 0> in Si$(T=0)$: $a_0^{\text{avg}}=
+ \frac{1}{3}(a_0^x+a_0^y+a_0^z)=5.4605\text{ \AA}$
+ $\rightarrow a(900\text{ K})=5.4704{ \AA}$
+ \end{itemize}
+ Used in the 900 K simulations: 5.4705 \AA\\
+ Consider next thoughts as well!
+
+ \underline{Zero total momentum simulations}
+ \begin{itemize}
+ \item If C is randomly inserted there is a net total momentum
+ \item No correction in the temperature control routine of VASP?
+ \item Relax a Si:C configuration first (at T=0)
+ \item Use this configuration as the MD initial configuration
+ \end{itemize}
+ Two possibilities regarding volume which came to my mind:
+ \begin{enumerate}
+ \item Calculate and use an averaged $a_0$ (in each direction)
+ from the relaxed configuration.
+ Else there might be a preferred orientation for the defect.
+ \item On the other hand this might be important
+ for the way defects agglomerate.
+ Continue using the relaxation results.
+ \end{enumerate}
+ In both methods the corrections due to the non zero temperature
+ are applied!
+
+\end{slide}
+
\begin{slide}
{\large\bf
\item C \hkl<0 0 1> configuration persists
\end{itemize}
+ Problem: Thermostat doesn't do momentum correction
+
+ TODO: Start MD using relaxed (at zero temperature) initial configuration
+
\end{slide}
\begin{slide}