\begin{remark}
Due to conjugate symmetry, linearity in the first argument results in conjugate linearity (also termed antilinearity) in the second argument.
-This is called a sesquilinear form.
\begin{equation}
(\vec{u},\lambda(\vec{v}'+\vec{v}''))=(\lambda(\vec{v}'+\vec{v}''),\vec{u})^*=
\lambda^*(\vec{v}',\vec{u})^*+\lambda^*(\vec{v}'',\vec{u})^*=
\lambda^*(\vec{u},\vec{v}')+\lambda^*(\vec{u},\vec{v}'')
\end{equation}
+This is called a sesquilinear form.
+If $K=\mathbb{R}$, conjugate symmetry reduces to symmetry and the sesquilinear form gets a bilinear form.
The inner product $(\cdot,\cdot)$ provides a mapping
\begin{equation}
\varphi_{\lambda(\vec{u}+\vec{v})}=
\lambda\varphi_{\vec{u}}+\lambda\varphi_{\vec{v}}\\
\end{equation}
-The kernel is $\vec{v}=0$, structural identity (isomorphism) of $V$ and $V^{\dagger}$ is .
+If the inner product is nondegenerate, i.e.\ $\forall\vec{u}\, (\vec{v},\vec{u})=0 \Leftrightarrow \vec{v}=0$, as it applies for the scalar product for instance, the mapping is injective.
+Since the dimension of $V$ and $V^{\dagger}$ is equal, it is additionally surjective.
+Then, $V$ is isomorphic to $V^{\dagger}$.
+Vector $\vec{v}^{\dagger}\equiv \varphi_{\vec{v}}\in V^{\dagger}$ is said to be the dual vector of $\vec{v}\in V$.
In physics and matrix algebra, the inner product is often defined with linearity in the second argument and conjugate linearity in the first argument.
This allows to express the inner product $(\vec{u},\vec{v})$ as a product of vector $\vec{v}$ with a dual vector or linear functional of dual space $V^{\dagger}$
\end{remark}
\begin{definition}
-If $\vec{u}\in U$, $\vec{v}\in V$ are vectors within the respective vector spaces and $\vec{\varphi}^{\dagger}\in V^{\dagger}$ is a linear functional of the dual space $V^{\dagger}$ of $V$,
-the outer product $\vec{u}\otimes\vec{v}$ is defined as the tensor product of $\vec{\varphi}^{\dagger}$ and $\vec{u}$,
+If $\vec{u}\in U$, $\vec{v}\in V$ are vectors within the respective vector spaces and $\vec{\varphi}\in V^{\dagger}$ is a linear functional of the dual space $V^{\dagger}$ of $V$,
+the outer product $\vec{u}\otimes\vec{v}$ is defined as the tensor product of $\vec{\varphi}$ and $\vec{u}$,
which constitutes a map $A:V\rightarrow U$ by
\begin{equation}
-\vec{v}\mapsto\vec{\varphi}^{\dagger}(\vec{v})\vec{u}
+\vec{v}\mapsto\vec{\varphi}(\vec{v})\vec{u}
\text{ ,}
\end{equation}
-where $\vec{\varphi}^{\dagger}(\vec{v})$ denotes the linear functional $\vec{\varphi}^{\dagger}\in V^{\dagger}$ on $V$ when evaluated at $\vec{v}\in V$, a scalar that in turn is multiplied with $\vec{u}\in U$.
+where $\vec{\varphi}(\vec{v})$ denotes the linear functional $\vec{\varphi}\in V^{\dagger}$ on $V$ when evaluated at $\vec{v}\in V$, a scalar that in turn is multiplied with $\vec{u}\in U$.
In matrix formalism, with respect to a given basis ${\vec{e}_i}$ of $\vec{u}$ and ${\vec{e}'_i}$ of $\vec{v}$,
if $\vec{u}=\sum_i^m \vec{e}_iu_i$ and $\vec{v}=\sum_i^n\vec{e}'_iv_i$,
\begin{equation}
\vec{u}\otimes\vec{v}=A=\left(
\begin{array}{c c c c}
-u_1v_1 & u_1v_2 & \cdots & u_1v_n\\
-u_2v_1 & u_2v_2 & \cdots & u_2v_n\\
+u_1v_1^* & u_1v_2^* & \cdots & u_1v_n^*\\
+u_2v_1^* & u_2v_2^* & \cdots & u_2v_n^*\\
\vdots & \vdots & \ddots & \vdots\\
-u_mv_1 & u_mv_2 & \cdots & u_mv_n\\
+u_mv_1^* & u_mv_2^* & \cdots & u_mv_n^*\\
\end{array}
\right)
\text{ .}