$x^1 = x_0;$ & $y^1 = y_0;$ & \\
$v^1_x = v_{x_0};$ & $v^1_y = v_{y_0};$ & \\
loop: & $x^2 = x^1 + \tau v^1_x;$ & $y^2 = y^1 + \tau v^1_y;$ \\
- & $v^2_x = v^1_x;$ & $v^2_y = v^1_y + (-mg) \tau;$ \\
+ & $v^2_x = v^1_x;$ & $v^2_y = v^1_y - g \tau;$ \\
& $x^1 = x^2;$ & $y^1 = y^2$ \\
& $v^1_x = v^2_x;$ & $v^1_y = v^2_y;$ \\
\end{tabular}
\begin{itemstep}
\item transformation method:
\begin{itemize}
- \item arbitrary propability distribution $\rho(y)$
+ \item arbitrary probability distribution $\rho(y)$
\item trafo: $p(x) dx = \rho(y) dy \Rightarrow x = \int_{- \infty}^y \rho(y) dy$
\item get inverse of $x(y) \Rightarrow y(x)$
\end{itemize}
}
\end{slide}}
-\overlays{4}{
+\overlays{2}{
\begin{slide}{metropolis algorithm}
\begin{itemstep}
\item importance sampling: \\
$<A> = \sum_i p_i A_i \approx \frac{1}{N} \sum_{i=1}^N A_i$ , with \\[6pt]
- $\qquad p_i = \frac{e^{\beta E_i}}{Z}$
- \item markov process: \\
- \begin{itemize}
- \item $P(A,t)$: probability of configuration $A$ at time $t$
- \item $W(A \rightarrow B)$: transition probability
- \[
- \begin{array}{l}
- P(A,t+1) = P(A,t) + \\
- \sum_B \Big( W(B \rightarrow A) P(B,t) - W(A \rightarrow B) P(A,t) \Big)
- \end{array}
- \]
- \end{itemize}
+ $\qquad p_i = \frac{e^{- \beta E_i}}{Z}$
+ \item detailed balance \\[6pt]
+ sufficient condition for equilibrium: \\
+ \[
+ W(A \rightarrow B) p(A) = W(B \rightarrow A) p(B)
+ \]
+ $\Rightarrow \frac{W(A \rightarrow B)}{W(B \rightarrow A)} = \frac{p(B)}{p(A)} = e^{\frac{- \Delta E}{k_B T}}$ \\[6pt]
+ with $\Delta E = E(B) - E(A)$
\end{itemstep}
\end{slide}}
\overlays{5}{
\begin{slide}{metropolis algorithm}
\begin{itemstep}
- \item detailed balance
+ \item choose $W$: \\
+ \[
+ W(A \rightarrow B) = \left\{
+ \begin{array}{ll}
+ e^{- \beta \Delta E} & : \Delta E > 0 \\
+ 1 & : \Delta E < 0
+ \end{array} \right.
+ \]
\item algorithm:
\begin{itemize}
- \item visit every lattice site
- \item calculate $\delta E$ for spin flip
- \item flip spin if $r \leq e^{\frac{-\delta E}{k_B T}}$
+ \item visit every lattice site
+ \item calculate $\Delta E$ for spin flip
+ \item flip spin if $r \leq e^{\frac{-\Delta E}{k_B T}}$
\end{itemize}
\end{itemstep}
\end{slide}}