]> hackdaworld.org Git - lectures/latex.git/commitdiff
force, to be on the save side
authorhackbard <hackbard@hackdaworld.org>
Tue, 20 Sep 2011 09:03:19 +0000 (11:03 +0200)
committerhackbard <hackbard@hackdaworld.org>
Tue, 20 Sep 2011 09:03:19 +0000 (11:03 +0200)
posic/thesis/basics.tex

index 391af4027fe327c2d31582d220f33688399f1016..5da2eaad6a54939978ef309fbd1e69b4654985eb 100644 (file)
@@ -566,7 +566,7 @@ Writing down the derivative of the total energy $E$ with respect to the position
 indeed reveals a contribution to the change in total energy due to the change of the wave functions $\Phi_j$.
 However, provided that the $\Phi_j$ are eigenstates of $H$, it is easy to show that the last two terms cancel each other and in the special case of $H=T+V$ the force is given by
 \begin{equation}
-\vec{F}_i=-\sum_j \langle \Phi_j | \Phi_j\frac{\partial V}{\partial \vec{R}_i} \rangle
+\vec{F}_i=-\sum_j \langle \Phi_j | \frac{\partial V}{\partial \vec{R}_i} \Phi_j \rangle
 \text{ .}
 \end{equation}
 This is called the Hellmann-Feynman theorem~\cite{feynman39}, which enables the calculation of forces, called the Hellmann-Feynman forces, acting on the nuclei for a given configuration, without the need for evaluating computationally costly energy maps.