]> hackdaworld.org Git - lectures/latex.git/commitdiff
initial checkin
authorhackbard <hackbard>
Fri, 24 Feb 2006 12:12:51 +0000 (12:12 +0000)
committerhackbard <hackbard>
Fri, 24 Feb 2006 12:12:51 +0000 (12:12 +0000)
posic/talks/posic_seminar.tex [new file with mode: 0644]

diff --git a/posic/talks/posic_seminar.tex b/posic/talks/posic_seminar.tex
new file mode 100644 (file)
index 0000000..07b19e8
--- /dev/null
@@ -0,0 +1,122 @@
+\documentclass{beamer}
+
+\mode<presentation>
+{
+%\usetheme{Berkeley}
+\usetheme{Warsaw}
+%\usetheme{Singapore}
+\setbeamercovered{transparent}
+}
+\usepackage{verbatim}
+\usepackage[german]{babel}
+\usepackage[latin1]{inputenc}
+\usepackage[T1]{fontenc}
+\usepackage{amsmath}
+\usepackage{ae}
+\usepackage{aecompl}
+\usepackage{colortbl}
+\usepackage{pgf,pgfarrows,pgfnodes,pgfautomata,pgfheaps,pgfshade}
+%\usepackage{pstricks}
+\usepackage{graphicx}
+\graphicspath{{../img}}
+\usepackage{hyperref}
+
+\begin{document}
+
+\title{the molecular dynamic simulation {\em posic}}
+\subtitle{atomistic simulation of the precipitation process of silicon carbide in carbon doped silicon}
+\author[F. Zirkelbach]{Frank Zirkelbach \\ \texttt{frank.zirkelbach@physik.uni-augsburg.de}}
+\institute{
+experimental physics IV\\
+university of augsburg
+}
+\date{june 2006}
+
+\AtBeginSection[]
+{
+  \begin{frame}<beamer>
+    \frametitle{agenda}
+    \tableofcontents[currentsection]
+  \end{frame}
+}
+
+\begin{frame}
+  \titlepage
+\end{frame}
+
+\begin{frame}
+  \frametitle{agenda}
+  \tableofcontents%[pausesections]
+\end{frame}
+
+\section{introduction}
+
+  \subsection{as things are now}
+
+\begin{frame}
+  \frametitle{introduction}
+  \framesubtitle{as things are now}
+  \begin{block}{precipitation process of $SiC$ in silicon}
+    \begin{itemize}
+      \item first steps:\\
+            (investigated by high resolution electron microscopy)
+            \begin{itemize}
+              \item formation of $C-Si$-dumbbells on regular $c-Si$ lattice
+                   sites
+             \item agglomeration into large clusters (embryos)
+            \end{itemize}
+      \item second step:\\
+            (not accessible by experiment)
+            \begin{itemize}
+             \item cluster size reaches a radius of $2-4 \, nm$
+             \item high interfacial energy due to the $SiC/Si$ lattice
+                   mismatch (~$20 \, \%$) is overcome
+             \item precipitation process of $SiC$
+            \end{itemize}
+    \end{itemize}
+  \end{block}
+\end{frame}
+
+  \subsection{motivation}
+
+\begin{frame}
+  \frametitle{introduction}
+  \framesubtitle{motivation}
+  \begin{block}{why studying the $SiC$ nucleation process}
+  \begin{itemize}
+    \item basic research
+    \item understanding the 2 steps of the precipitation process\\
+          $\Rightarrow$ facilitation of the $SiC$ heteroepitaxy on $c-Si$\\
+         $\Rightarrow$ suppress nucleation of $SiC$ in certain applications
+    \item $SiC$: most rapidly developed wide band gap semiconductor suitable
+          in high temperature, high frequency and high power applications
+  \end{itemize}
+  \end{block}
+\end{frame}
+
+\begin{frame}
+  \frametitle{introduction}
+  \framesubtitle{motivation}
+  \begin{block}{why doing an atomistic simulation}
+  \begin{itemize}
+    \item precipitation process is not understood for the most part
+    \item monitor the atomic structures in early stages of the embryo formation
+    \item atomic rearrangement in the most critical second step\\
+          (which is experimentally not accessible)
+    \item information about the atomic structure and interface of the
+          $SiC$ precipitates and the crystalline silicon\\
+         (including stress fields)
+  \end{itemize}
+  \end{block}
+\end{frame}
+
+\section{experimental observations}
+
+\section{simulation}
+
+\section{results}
+
+\section{summary \& outlook}
+
+\end{document}
+