\begin{equation}
{\bf F}_i = - \nabla_{{\bf r}_i} U({\{\bf r}\}) \, \textrm{.}
\end{equation}
+
Given the initial conditions ${\bf r}_i(t_0)$ and $\dot{{\bf r}}_i(t_0)$ the equations can be integrated by a certain integration algorithm.
The solution of these equations provides the complete information of a system evolving in time.
\end{equation}
\subsubsection{The Stillinger Weber potential}
-\subsubsection{The Stillinger Weber potential}
-\subsubsection{The Stillinger Weber potential}
+
+The Stillinger Weber potential \cite{stillinger_weber} \ldots
+
+\begin{equation}
+U = \sum_{i,j} U_2({\bf r}_i,{\bf r}_j) + \sum_{i,j,k} U_3({\bf r}_i,{\bf r}_j,{\bf r}_k)
+\end{equation}
+
+\begin{equation}
+U_2(r_{ij}) = \left\{
+ \begin{array}{ll}
+ \epsilon A \Big( B (r_{ij} / \sigma)^{-p} - 1\Big) \exp \Big[ (r_{ij} / \sigma - 1)^{-1} \Big] & r_{ij} < a \sigma \\
+ 0 & r_{ij} \ge a \sigma
+ \end{array} \right.
+\end{equation}
+
+\begin{equation}
+U_3({\bf r}_i,{\bf r}_j,{\bf r}_k) =
+\epsilon \Big[ h(r_{ij},r_{ik},\theta_{jik}) + h(r_{ji},r_{jk},\theta_{ijk}) + h(r_{ki},r_{kj},\theta_{ikj}) \Big]
+\end{equation}
+
+\begin{equation}
+h(r_{ij},r_{ik},\theta_{jik}) =
+\lambda \exp \Big[ \gamma (r_{ij}/\sigma -a)^{-1} + \gamma (r_{ik}/\sigma - a)^{-1} \Big] \Big( \cos \theta_{jik} + \frac{1}{3} \Big)^2
+\end{equation}
+
+\subsubsection{The Tersoff potential}
+
+Ther Tersoff potential \cite{tersoff1} \ldots
+
+\begin{equation}
+V_{ij} = f_C(r_{ij}) [ f_R(r_{ij}) + b_{ij} f_A(r_{ij}) ]
+\end{equation}
+
+The total energy is then given by
+\begin{equation}
+E = \frac{1}{2} \sum_{i \ne j} V_{ij} \, \textrm{.}
+\end{equation}
+
+
+\begin{equation}
+f_R(r_{ij}) = A_{ij} \exp (- \lambda_{ij} r_{ij} ) \\
+\end{equation}
+
+\begin{equation}
+f_A(r_{ij}) = -B_{ij} \exp (- \mu_{ij} r_{ij} ) \\
+\end{equation}
+
+The function $f_C$ is the potential cutoff function designed to have a smooth transition between $R_{ij}$ and $S_{ij}$.
+\begin{equation}
+f_C(r_{ij}) = \left\{
+ \begin{array}{ll}
+ 1 & r_{ij} < R_{ij} \\
+ \frac{1}{2} + \frac{1}{2} \cos [ \pi (r_{ij} - R_{ij})/(S_{ij} - R_{ij}) ] & R_{ij} < r_{ij} < S_{ij} \\
+ 0 & r_{ij} > S_{ij}
+ \end{array} \right.
+\end{equation}
+
+
+\subsubsection{The Brenner potential}
\subsection{Statistical ensembles}
\label{subsection:statistical_ensembles}
Oeuvres Compl\`etes de Laplace, volume VII.
Paris, 1820, Gauthier-Villars.
\bibitem{alder1}
- B. J. Alder, T.E. Wainwright.
+ B. J. Alder, T. E. Wainwright.
J. Chem. Phys. 27 (1957) 1208.
\bibitem{alder2}
- B. J. Alder, T.E. Wainwright.
+ B. J. Alder, T. E. Wainwright.
J. Chem. Phys. 31 (1959) 459.
+ \bibitem{stillinger_weber}
+ F. H. Stillinger, T. A. Weber.
+ Phys. Rev. B 31 (1985) 5262.
+ \bibitem{tersoff1}
+ J. Tersoff.
+ Phys. Rev. B 39 (1989) 5566.
\bibitem{example}
\selectlanguage{german}
F. Zirkelbach, M. H"aberlen, J. K. N. Lindner, B. Stritzker.
\selectlanguage{english}
- {\em Modelling of a selforganization process leading to periodic arrays of nanometric amorphous precipitates by ion irradiation.}
Comp. Mater. Sci. 33 (2005) 310.
\end{thebibliography}