In Version 1 der Simulation wurden $x = y = 50$ beziehungsweise $x = y = 64$ und $z = 100$ gesetzt.
In Version 2 sind $x = y = 64$ und $z = 233$.
+ Zum besseren Vergleich der Simulationsergebnisse mit den experimentell erhaltenen TEM-Aufnahmen k"onnen Querschnitte der amoprh/kristallinen Struktur als Bitmap ausgegeben werden.
+ Kristalline W"urfel sind schwarz und amorphe "Wurfel wei"s dargestellt.
+ F"ur die $x-z$- beziehungsweise $y-z$-Querschnitte besteht die M"oglichkeit "uber mehrere Querschnittezu mitteln.
+ Die selbe Mittelung "uber den amorph/kristallinen Zustand ist bei den TEM-Aufnahmen, der auf eine Dicke von $100$ bis $300 nm$ pr"aparierten Proben der Fall.
+
\subsection{Amorphisierung und Rekristallisation}
\label{subsection:a_and_r}
F"ur die Simulation ben"otigt man die Statistik der Sto"sprozesse des Kohlenstoffs im Siliziumtarget unter den gegebenen Implantationsbedingungen.
Dabei sind insbesondere die nukleare Bremskraft f"ur den Amorphisierungs- beziehungsweise Rekristallisationsschritt und das Implantationsprofil f"ur den Einbau des Kohlenstoffs ins Siliziumtarget von Interesse.
- {\em nlsop} benutzt die Ergebnisse des {\em TRIM}-Programms, welches die Wechelswirkung der Ionen mit dem Target simuliert und somit ein geeignetes Bremskraft- und Implantationsprofil, sowie eine genaue Buchf"uhrung "uber die Sto"skaskaden bereitstellt.
+ {\em NLSOP} benutzt die Ergebnisse des {\em TRIM}-Programms, welches die Wechelswirkung der Ionen mit dem Target simuliert und somit ein geeignetes Bremskraft- und Implantationsprofil, sowie eine genaue Buchf"uhrung "uber die Sto"skaskaden bereitstellt.
Durch die Abbildung von Zufallszahlen auf die so erhaltenen Verteilungen k"onnen die eigentlichen physikalischen Abl"aufe sehr schnell und einfach behandelt werden.
- Im Folgenden wird auf die Ermittlung einiger, f"ur {\em nlsop} wichtige Statistiken eingegangen.
+ Im Folgenden wird auf die Ermittlung einiger, f"ur {\em NLSOP} wichtige Statistiken eingegangen.
\subsection{Implantationsprofil und nukleare Bremskraft}
Sputtereffekte und Abweichungen auf Grund der kontinuierlich ver"anderten Targetzusammensetzung w"ahrend der Hochdosisimplantation werden von {\em TRIM} allerdings nicht ber"ucksichtigt.
Die Profile werden von {\em TRIM} selbst in seperate Dateien geschrieben.
- Tauscht man die Kommata (Trennung von Ganzzahl und Kommastelle) durch Punkte aus, so kann {\em nlsop} diese Dateien auslesen und die Profile extrahieren.
+ Tauscht man die Kommata (Trennung von Ganzzahl und Kommastelle) durch Punkte aus, so kann {\em NLSOP} diese Dateien auslesen und die Profile extrahieren.
\printimg{h}{width=12cm}{trim_impl.eps}{Durch {\em SRIM 2003.26} berechnetes Implantationsprofil f"ur $180 keV$ $C^+ \rightarrow Si$.}{img:trim_impl}
In Abbildung \ref{img:trim_impl} ist das f"ur diese Simulation verwendete, von einer neueren {\em TRIM}-Version ({\em SRIM 2003.26}) berechnete Implantationsprofil abgebildet.
- Dieses Profil verwendet {\em nlsop} zum Einbau des Kohelnstoffs.
+ Dieses Profil verwendet {\em NLSOP} zum Einbau des Kohelnstoffs.
Das Implantationsmaximum liegt hier bei ungef"ahr $530 nm$.
Auff"allig ist eine Verschiebung des Maximums um $30 nm$ zu dem Maximum aus Abbildung \ref{img:bk_impl_p}.
Dies ist auf eine Ver"anderung in der elektronischen Bremskrfat zuru"ckzuf"uhren.
\printimg{h}{width=12cm}{trim_nel.eps}{Durch {\em SRIM 2003.26} berechneter nuklearer Energieverlust f"ur $180 keV$ $C^+ \rightarrow Si$.}{img:trim_nel}
Zum Vergleich zeigt Abbildung \ref{img:trim_nel} die von {\em SRIM 2003.26} selbst berechnete nukleare Bremskraft.
Wie zu erwarten entspricht sie ungef"ahr dem Verlauf der in Abbildung \ref{img:trim_coll} gezeigten Energieabgabe.
- Daher wird dieses Profil f"ur {\em nlsop} zur Verteilung der Kollisionen im Taregt verwendet.
+ Daher wird dieses Profil f"ur {\em NLSOP} zur Verteilung der Kollisionen im Taregt verwendet.
Ein implantiertes Ion und dadurch entstandene Recoils verursachen durchschnittlich eine Anzahl von $1088$ Kollisionen, bis alle Teilchen bis auf Energien unterhalb der Verlagerungsenergie f"ur $Si$ Atome von $15 eV$ \cite{unknown} abgesunken sind.
Die Zahl der getroffenen W"urfel, also Volumina in denen ein Ion mindestens eine Kollision verursacht, ist sehr viel geringer.
\begin{center}
\begin{pspicture}(0,0)(15,18)
- \rput(7,18){\rnode{start}{\psframebox{{\em nlsop} Start}}}
+ \rput(7,18){\rnode{start}{\psframebox{{\em NLSOP} Start}}}
\rput(7,16){\rnode{random1}{\psframebox{\parbox{8.5cm}{
Ausw"urfeln der Zufallszahlen:\\
\lput*{0}{ja}
\end{pspicture}
- \caption{{\em nlsop} Ablaufschema Teil 1: Amorphisierung und Rekristallisation.}
+ \caption{{\em NLSOP} Ablaufschema Teil 1: Amorphisierung und Rekristallisation.}
\label{img:flowchart1}
\end{center}
\end{figure}
\ncline[]{->}{inc_c}{weiter_3}
\end{pspicture}
- \caption{{\em nlsop} Ablaufschema Teil 2: Einbau des Kohlenstoffs (gr"un).}
+ \caption{{\em NLSOP} Ablaufschema Teil 2: Einbau des Kohlenstoffs (gr"un).}
\label{img:flowchart2}
\end{center}
\end{figure}
}}}}
\ncline[]{->}{s_p}{check_n}
- \rput(5,3){\rnode{start}{\psframebox{{\em nlsop} Start}}}
+ \rput(5,3){\rnode{start}{\psframebox{{\em NLSOP} Start}}}
\ncline[]{->}{check_n}{start}
\lput*{0}{nein}
- \rput(1,3){\rnode{stop}{\psframebox{{\em nlsop} Stop}}}
+ \rput(1,3){\rnode{stop}{\psframebox{{\em NLSOP} Stop}}}
\ncline[]{->}{check_n}{stop}
\lput*{0}{ja}
\end{pspicture}
- \caption{{\em nlsop} Ablaufschema Teil 2: Diffusion (gelb) und Sputtervorgang (rot).}
+ \caption{{\em NLSOP} Ablaufschema Teil 2: Diffusion (gelb) und Sputtervorgang (rot).}
\label{img:flowchart3}
\end{center}
\end{figure}
Da sowohl die Reichweitenverteilung, als auch die nukleare Bremskraft in Ebenen gr"osser $Z$ ungleich Null ist, kann Sputtern nicht beachtet werden.
Der Diffusionsprozess ist uneingeschr"ankt m"oglich.
+ Die Rechenzeit einer Simulation mit $3 \times 10^7$ Durchl"aufen, einem $64 \times 64 \times 100$ grossem Target und Diffusion alle $100$ Schritte betr"agt auf einem $900 Mhz$ {\em Pentium 3} ungef"ahr $3$ Stunden.
In der zweiten Version wird die gesamte Implantationstiefe simuliert.
Das Simulationsfenster geht von $0-700 nm$.
Da sowohl der nukleare Energieverlust als auch die Kohlenstoffkonzentration in Ebenen gr"osser $Z$ auf Null abgesunken ist, kann die Sputterroutine ausgef"uhrt werden.
Der Diffusionsprozess ist ebenfalls uneingeschr"ankt m"oglich.
+ Auf dem selben Rechner ben"otigt eine Simulation f"ur ein Target der oben genannten Ausdehnung, einer Anzahl von $100$ Treffern pro Ion und $160 \times 10^6$ Schritten mit Diffusion alle $10^6$ Schritte ungef"ahr $3$ Tage.
\section{Test der Zufallszahlen}