\begin{center}
\begin{minipage}{7.5cm}
\includegraphics[width=7cm]{comb_pos.eps}
+% ./visualize_contcar -w 640 -h 480 -d results/.../CONTCAR -nll -0.20 -0.20 -0.6 -fur 1.2 1.2 0.6 -c 0.5 -1.5 0.3 -L 0.5 0 0 -r 0.6 -m 3.0 0.0 0.0 0.0 3.0 0.0 0.0 0.0 3.0 -A -1 2.465
\end{minipage}
\begin{minipage}{6.0cm}
\underline{Positions given in $a_{\text{Si}}$}\\[0.3cm]
\hline
\hkl<0 0 -1> & {\color{red}-0.08} & -1.15 & {\color{red}-0.08} & 0.04 & -1.66 & -0.19\\
\hkl<0 0 1> & 0.34 & 0.004 & -2.05 & 0.26 & -1.53 & -0.19\\
- \hkl<0 -1 0> & {\color{orange}-2.39} & -2.16 & {\color{green}-0.10} & {\color{blue}-0.27} & {\color{magenta}-1.88} & -0.09\\
- \hkl<0 1 0> & {\color{cyan}-2.25} & -0.36 & {\color{cyan}-2.25} & {\color{purple}-0.12} & {\color{violet}-1.38} & -\\
- \hkl<-1 0 0> & {\color{orange}-2.39} & -1.90 & {\color{cyan}-2.25} & {\color{purple}-0.12} & {\color{magenta}-1.88} & -\\
- \hkl<1 0 0> & {\color{cyan}-2.25} & -0.17 & {\color{green}-0.10} & {\color{blue}-0.27} & {\color{violet}-1.38} & -\\
+ \hkl<0 -1 0> & {\color{orange}-2.39} & -0.17 & {\color{green}-0.10} & {\color{blue}-0.27} & {\color{magenta}-1.88} & {\color{gray}-0.05}\\
+ \hkl<0 1 0> & {\color{cyan}-2.25} & -1.90 & {\color{cyan}-2.25} & {\color{purple}-0.12} & {\color{violet}-1.38} & {\color{yellow}-0.06}\\
+ \hkl<-1 0 0> & {\color{orange}-2.39} & -0.36 & {\color{cyan}-2.25} & {\color{purple}-0.12} & {\color{magenta}-1.88} & {\color{gray}-0.05}\\
+ \hkl<1 0 0> & {\color{cyan}-2.25} & -2.16 & {\color{green}-0.10} & {\color{blue}-0.27} & {\color{violet}-1.38} & {\color{yellow}-0.06}\\
\hline
- C substitutional (C$_{\text{S}}$) & 0.26 & -0.51 & -0.93 & -0.15 & 0.49 & -\\
- Vacancy & -5.39 ($\rightarrow$ C$_{\text{S}}$) & -0.59 & -3.14 & -0.54 & -0.50 & -\\
+ C substitutional (C$_{\text{S}}$) & 0.26 & -0.51 & -0.93 & -0.15 & 0.49 & -0.05\\
+ Vacancy & -5.39 ($\rightarrow$ C$_{\text{S}}$) & -0.59 & -3.14 & -0.54 & -0.50 & -0.31\\
\hline
\hline
\end{tabular}
Thus, $E_{\text{b}}$ can be best thought of a binding energy, which is required to bring the defects to infinite separation.
In fact, a \hkl<0 0 -1> dumbbell interstitial created at position R with a distance of $\frac{a_{\text{Si}}}{2}\hkl<3 2 3>$ ($\approx 12.8$ \AA) from the initial one results in an energy as low as -0.19 eV.
There is still a low interaction which is due to the equal orientation of the defects.
-By changing the orientation of the second dumbbell interstitial to the ...-type the interaction is even mor reduced resulting in an energy of $E_{\text{b}}=...\text{ eV}$ for a distance, which is the maximum that can be realized due to periodic boundary conditions.
+By changing the orientation of the second dumbbell interstitial to the \hkl<0 -1 0>-type the interaction is even mor reduced resulting in an energy of $E_{\text{b}}=-0.05\text{ eV}$ for a distance, which is the maximum that can be realized due to periodic boundary conditions.
The energies obtained in the R column of table \ref{eq:defects:e_of_comb} are used as a reference to identify, whether less distanced defects of the same type are favorable or unfavorable compared to the far-off located defect.
Configurations wih energies greater than zero or the reference value are energetically unfavorable and expose a repulsive interaction.
These configurations are unlikely to arise or to persist for non-zero temperatures.
The breaking of the $\sigma$ bond is indeed confirmed by investigating the charge density isosurface of this configuration.
Todo: Is this conf really benificial for SiC prec?
-Figure \ref{} shows the next three configurations energetically favored.
--2.16 ... next to correct C-Si also a nicely C-C distance observed!
-sth similar to C-Si 110 db without delta h due to the involevment of initial c int atom.
+\begin{figure}[h]
+\begin{center}
+\begin{minipage}[t]{5cm}
+a) \underline{$E_{\text{b}}=-2.16\text{ eV}$}
+\begin{center}
+\includegraphics[width=4.8cm]{00-1dc/2-16.eps}
+\end{center}
+\end{minipage}
+\begin{minipage}[t]{5cm}
+b) \underline{$E_{\text{b}}=-1.90\text{ eV}$}
+\begin{center}
+\includegraphics[width=4.8cm]{00-1dc/1-90.eps}
+\end{center}
+\end{minipage}
+\begin{minipage}[t]{5cm}
+c) \underline{$E_{\text{b}}=-2.05\text{ eV}$}
+\begin{center}
+\includegraphics[width=4.8cm]{00-1dc/2-05.eps}
+\end{center}
+\end{minipage}
+\end{center}
+\caption{Relaxed structures of defect complexes obtained by creating a a) \hkl<1 0 0> and b) \hkl<0 1 0> dumbbell at position 2 and a c) \hkl<0 0 1> dumbbel at position 3.}
+\label{fig:defects:comb_db_02}
+\end{figure}
+Figure \ref{fig:defects:comb_db_02} shows the next three most energetically favorable configurations.
+The relaxed configuration obtained by creating a second \hkl<1 0 0> dumbbell at position 2 is shown in figure \ref{fig:defects:comb_db_02} a).
+A binding energy of -2.16 eV is observed.
+After relaxation the second dumbbell is aligned along \hkl<1 1 0>.
+The bond of the silicon atoms 1 and 2 does not persist.
+Instead the silicon atom forms a bond with the initial carbon interstitial and the second carbon atom forms a bond with silicon atom 1 forming four bonds in total.
+The carbon atoms are spaced by 3.14 \AA, which is very close to the expected C-C next neighbour distance of 3.08 \AA{} in silicon carbide.
+
-2.05 ... both C atoms correctly coordinated, however (check C-C distance, too close?) wrong coordination of the C-Si-C bonds which reside in a plane ... all the 4 participating atoms reside in a plane ...