The simulation sequence and other parameters aside system temperature remain unchanged as in section \ref{subsection:initial_sims}.
Since there is no significant difference among the $V_2$ and $V_3$ simulations only the $V_1$ and $V_2$ simulations are carried on and refered to as low carbon and high carbon concentration simulations.
Temperatures ranging from $450\,^{\circ}\mathrm{C}$ up to $2050\,^{\circ}\mathrm{C}$ are used.
+
A simple quality value $Q$ is introduced, which helps to estimate the progress of structural evolution.
In bulk 3C-SiC every C atom has four next neighboured Si atoms and every Si atom four next neighboured C atoms.
The quality could be determined by counting the amount of atoms which form bonds to four atoms of the other species.
\includegraphics[width=12cm]{tot_pc_thesis.ps}\\
\includegraphics[width=12cm]{tot_ba.ps}
\end{center}
-\caption[Si-C radial distribution and quality evolution for the low concentration simulations at different elevated temperatures.]{Si-C radial distribution and quality evolution for the low concentration simulations at different elevated temperatures. All structures are cooled down to $20\,^{\circ}\mathrm{C}$. Arrows in the quality plot mark the end of carbon insertion and the start of the cooling down step.}
+\caption[Si-C radial distribution and quality evolution for the low concentration simulations at different elevated temperatures.]{Si-C radial distribution and quality evolution for the low concentration simulations at different elevated temperatures. All structures are cooled down to $20\,^{\circ}\mathrm{C}$. The grey line shows resulting Si-C bonds in a configuration if substitutional C in c-Si (C$_\text{sub}$) at zero temperature. Arrows in the quality plot mark the end of carbon insertion and the start of the cooling down step.}
\label{fig:md:tot_si-c_q}
\end{figure}
-Figure \ref{fig:md:tot_si-c_q} shows the radial distribution of Si-C bonds for different temperatures and the corresponding quality evolution as defined earlier.
-
-Cut-off vanisches, thats a nice win ...
-
-Further explanation of PC ...
-
-100 to sub configurations ...
-
-This is reflected in the qualities obtained for different temperatures.
+Figure \ref{fig:md:tot_si-c_q} shows the radial distribution of Si-C bonds for different temperatures and the corresponding quality evolution as defined earlier for the low concentration simulaton, that is the $V_1$ simulation.
+The first noticeable and promising change in the Si-C radial distribution is the successive decline of the artificial peak at the Si-C cut-off distance with increasing temperature up to the point of disappearance at temperatures above $1650\,^{\circ}\mathrm{C}$.
+The system provides enough kinetic energy to affected atoms, which are able to escape the cut-off region.
+Another important observation in structural change is exemplified in the two shaded areas.
+In the grey shaded region a decrease of the peak at 0.186 nm and the bump at 0.175 nm and a concurrent increase of the peak at 0.197 nm with increasing temperature is visible.
+Similarly the peaks at 0.335 nm and 0.386 nm shrink in contrast to a new peak forming at 0.372 nm as can be seen in the yellow shaded region.
+Obviously the structure obtained from the $450\,^{\circ}\mathrm{C}$ simulations, which is dominated by the existence of \hkl<1 0 0> C-Si dumbbells transforms into a different structure with increasing simulation temperature.
+Investigations of the atomic data reveal substitutional carbon to be responsible for the new Si-C bonds.
+The peak at 0.197 nm corresponds to the distance of a substitutional carbon to the next neighboured silicon atoms.
+The one at 0.372 is the distance of the substitutional carbon atom to the second next silicon neighbour along the \hkl<1 1 0> direction.
+Comparing the radial distribution for the Si-C bonds at $2050\,^{\circ}\mathrm{C}$ to the resulting Si-C bonds in a configuration of a substitutional carbon atom in crystalline silicon excludes all possibility of doubt.
+The resulting bonds perfectly match and, thus, explain the peaks observe for the increased temperature simulations.
+To conclude, by increasing the simulation temperature, the \hkl<1 0 0> C-Si dumbbell characterized structure transforms into a structure dominated by substitutional C.
+
+This is also reflected in the qualities obtained for different temperatures.
\begin{figure}[!ht]
\begin{center}