]> hackdaworld.org Git - lectures/latex.git/commitdiff
commas 'In addition' and time step!
authorhackbard <hackbard@hackdaworld.org>
Tue, 27 Sep 2011 08:42:46 +0000 (10:42 +0200)
committerhackbard <hackbard@hackdaworld.org>
Tue, 27 Sep 2011 08:42:46 +0000 (10:42 +0200)
posic/thesis/defects.tex
posic/thesis/md.tex
posic/thesis/simulation.tex

index ec6a210db78fd944243f90aa958b50ee643a6259..4bb2677620a401acb789cec3ff7107d31e2b5fd6 100644 (file)
@@ -388,7 +388,7 @@ On the other hand, the C atom forms an almost collinear bond ($\theta_3$) with t
 This is supported by the image of the charge density isosurface in Fig.~\ref{img:defects:charge_den_and_ksl}.
 The two lower Si atoms are $sp^3$ hybridized and form $\sigma$ bonds to the Si DB atom.
 The same is true for the upper two Si atoms and the C DB atom.
-In addition the DB atoms form $\pi$ bonds.
+In addition, the DB atoms form $\pi$ bonds.
 However, due to the increased electronegativity of the C atom the electron density is attracted by and, thus, localized around the C atom.
 In the same figure the Kohn-Sham levels are shown.
 There is no magnetization density.
index e530e03bb09a9144e778e31f807197b674ba92df..d89f30627c2d2c604677d3697841c32b67315d3c 100644 (file)
@@ -180,7 +180,7 @@ In 3C-SiC, the same distance is also expected for nearest neighbor Si atoms.
 The bottom of Fig.~\ref{fig:md:pc_si-si_c-c} shows the radial distribution of Si-Si bonds together with a reference graph for pure c-Si.
 Indeed, non-zero $g(r)$ values around \unit[0.31]{nm} are observed while the amount of Si pairs at regular c-Si distances of \unit[0.24]{nm} and \unit[0.38]{nm} decreases.
 However, no clear peak is observed but the interval of enhanced $g(r)$ values corresponds to the width of the C-C $g(r)$ peak.
-In addition the abrupt increase of Si pairs at \unit[0.29]{nm} can be attributed to the Si-Si cut-off radius of \unit[0.296]{nm} as used in the present bond order potential.
+In addition, the abrupt increase of Si pairs at \unit[0.29]{nm} can be attributed to the Si-Si cut-off radius of \unit[0.296]{nm} as used in the present bond order potential.
 The cut-off function causes artificial forces pushing the Si atoms out of the cut-off region.
 Without the abrupt increase, a maximum around \unit[0.31]{nm} gets even more conceivable.
 Analyses of randomly chosen configurations, in which distances around \unit[0.3]{nm} appear, identify \ci{} \hkl<1 0 0> DBs to be responsible for stretching the Si-Si next neighbor distance for low C concentrations, i.e.\ for the $V_1$ and early stages of $V_2$ and $V_3$ simulation runs.
@@ -433,7 +433,7 @@ This value is almost equal to the temperature of $2050\,^{\circ}\mathrm{C}$ alre
 Since the maximum temperature is reached, the approach is reduced to the application of longer time scales.
 This is considered useful since the estimated evolution of quality in the absence of the cooling down sequence in figure~\ref{fig:md:tot_si-c_q} predicts an increase in quality and, thus, structural evolution is likely to occur if the simulation is proceeded at maximum temperature.
 
-Next to the employment of longer time scales and a maximum temperature a few more changes are applied.
+Next to the employment of longer time scales and a maximum temperature, a few more changes are applied.
 In the following simulations, the system volume, the amount of C atoms inserted and the shape of the insertion volume are modified from the values used in first MD simulations.
 To speed up the simulation, the initial simulation volume is reduced to 21 Si unit cells in each direction and 5500 inserted C atoms in either the whole volume or in a sphere with a radius of 3 nm corresponding to the size of a precipitate consisting of 5500 C atoms.
 The \unit[100]{ps} sequence after C insertion intended for structural evolution is exchanged by a \unit[10]{ns} sequence, which is hoped to result in the occurrence of infrequent processes and a subsequent phase transition.
index 850014ef857318e65ba58fd9ebec9a01d62ae8b9..beaeaed8f71c2fdb3cca1275be10886e41babf08 100644 (file)
@@ -180,14 +180,14 @@ In the latter case the time constant of the Berendsen thermostat is set to \unit
 However, in some cases  a time constant of \unit[100]{fs} turned out to result in lower barriers.
 Defect structures as well as the simulations modeling the SiC precipitation are performed in the isothermal-isobaric $NpT$ ensemble.
 
-In addition to the bond order formalism the EA potential provides a set of parameters to describe the interaction in the C/Si system, as discussed in section~\ref{subsection:interact_pot}.
-There are basically no free parameters, which could be set by the user and the properties of the potential and its parameters are well known and have been extensively tested by the authors~\cite{albe_sic_pot}.
+In addition to the bond order formalism, the EA potential provides a set of parameters to describe the interaction in the C/Si system, as discussed in section~\ref{subsection:interact_pot}.
+There are basically no free parameters, which could be set by the user, and the properties of the potential and its parameters are well known and have been extensively tested by the authors~\cite{albe_sic_pot}.
 Therefore, test calculations are restricted to the time step used in the Verlet algorithm to integrate the equations of motion.
 Nevertheless, a further and rather uncommon test is carried out to roughly estimate the capabilities of the EA potential regarding the description of 3C-SiC precipitation in c-Si.
 
 \subsection{Time step}
 
-The quality of the integration algorithm and the occupied time step is determined by the ability to conserve the total energy.
+The quality of the integration algorithm and the occupied time step of \unit[1]{fs} is determined by the ability to conserve the total energy.
 Therefor, simulations of a $9\times9\times9$ 3C-SiC unit cell containing 5832 atoms in total are carried out in the $NVE$ ensemble.
 The calculations are performed for \unit[100]{ps} corresponding to $10^5$ integration steps and two different initial temperatures are considered, i.e.\ \unit[0]{$^{\circ}$C} and \unit[1000]{$^{\circ}$C}.
 \begin{figure}[t]
@@ -200,7 +200,7 @@ The calculations are performed for \unit[100]{ps} corresponding to $10^5$ integr
 The evolution of the total energy is displayed in Fig.~\ref{fig:simulation:verlet_e}.
 Almost no shift in energy is observable for the simulation at \unit[0]{$^{\circ}$C}.
 Even for \unit[1000]{$^{\circ}$C} the shift is as small as \unit[0.04]{eV}, which is a quite acceptable error for $10^5$ integration steps.
-Thus, using a time step of \unit[100]{ps} is considered small enough.
+Thus, using a time step of \unit[1]{fs} is considered small enough.
 
 \subsection{3C-SiC precipitate in c-Si}
 \label{section:simulation:prec}