Fig.~\ref{fig:sep_def} shows the obtained structures while the corresponding energies of formation are summarized and compared to values from literature in table~\ref{table:sep_eof}.\r
\begin{figure}\r
\begin{minipage}[t]{0.32\columnwidth}\r
-\underline{Si $\langle 1 1 0 \rangle$ DB}\\\r
+\underline{Si$_{\text{i}}$ $\langle 1 1 0 \rangle$ DB}\\\r
\includegraphics[width=\columnwidth]{si110.eps}\r
\end{minipage}\r
\begin{minipage}[t]{0.32\columnwidth}\r
-\underline{Si hexagonal}\\\r
+\underline{Si$_{\text{i}}$ hexagonal}\\\r
\includegraphics[width=\columnwidth]{sihex.eps}\r
\end{minipage}\r
\begin{minipage}[t]{0.32\columnwidth}\r
-\underline{Si tetrahedral}\\\r
+\underline{Si$_{\text{i}}$ tetrahedral}\\\r
\includegraphics[width=\columnwidth]{sitet.eps}\r
\end{minipage}\\\r
\begin{minipage}[t]{0.32\columnwidth}\r
-\underline{Si $\langle 1 0 0 \rangle$ DB}\\\r
+\underline{Si$_{\text{i}}$ $\langle 1 0 0 \rangle$ DB}\\\r
\includegraphics[width=\columnwidth]{si100.eps}\r
\end{minipage}\r
\begin{minipage}[t]{0.32\columnwidth}\r
\includegraphics[width=\columnwidth]{csub.eps}\r
\end{minipage}\\\r
\begin{minipage}[t]{0.32\columnwidth}\r
-\underline{C $\langle 1 0 0 \rangle$ DB}\\\r
+\underline{C$_{\text{i}}$ $\langle 1 0 0 \rangle$ DB}\\\r
\includegraphics[width=\columnwidth]{c100.eps}\r
\end{minipage}\r
\begin{minipage}[t]{0.32\columnwidth}\r
-\underline{C $\langle 1 1 0 \rangle$ DB}\\\r
+\underline{C$_{\text{i}}$ $\langle 1 1 0 \rangle$ DB}\\\r
\includegraphics[width=\columnwidth]{c110.eps}\r
\end{minipage}\r
\begin{minipage}[t]{0.32\columnwidth}\r
-\underline{C bond-centered}\\\r
+\underline{C$_{\text{i}}$ bond-centered}\\\r
\includegraphics[width=\columnwidth]{cbc.eps}\r
\end{minipage}\r
\caption{Configurations of silicon and carbon point defects in silicon. Silicon and carbon atoms are illustrated by yellow and grey spheres respectively. Blue lines are bonds drawn whenever considered appropriate to ease identifying defect structures for the reader. Dumbbell configurations are abbreviated by DB.}\r
\begin{table*}\r
\begin{ruledtabular}\r
\begin{tabular}{l c c c c c c c c c}\r
- & Si $\langle1 1 0\rangle$ DB & Si H & Si T & Si $\langle 1 0 0\rangle$ DB & V & C$_{\text{s}}$ & C $\langle1 0 0\rangle$ DB & C $\langle1 1 0\rangle$ DB & C BC \\\r
+ & Si$_{\text{i}}$ $\langle1 1 0\rangle$ DB & Si$_{\text{i}}$ H & Si$_{\text{i}}$ T & Si $\langle 1 0 0\rangle$ DB & V & C$_{\text{s}}$ & C$_{\text{i}}$ $\langle1 0 0\rangle$ DB & C$_{\text{i}}$ $\langle1 1 0\rangle$ DB & C$_{\text{i}}$ BC \\\r
\hline\r
- This work & 3.39 & 3.42 & 3.77 & 4.41 & 3.63 & 1.95 & 3.72 & 4.16 & 4.66 \\\r
- References & 3.40\cite{al-mushadani03}, 3.31\cite{leung99} & 3.45\cite{al-mushadani03}, 3.31\cite{leung99} & 3.43\cite{leung99} & - & 3.53\cite{al-mushadani03} & 1.89\cite{dal_pino93} & x & - & x+2.1\cite{capaz94}\r
+ Present study & 3.39 & 3.42 & 3.77 & 4.41 & 3.63 & 1.95 & 3.72 & 4.16 & 4.66 \\\r
+ \multicolumn{10}{c}{Other ab initio studies} \\\r
+ Ref.\cite{al-mushadani03} & 3.40 & 3.45 & - & - & 3.53 & - & - & - & - \\\r
+ Ref.\cite{leung99} & 3.31 & 3.31 & 3.43 & - & - & - & - & - & - \\\r
+ Ref.\cite{dal_pino93,capaz94} & - & - & - & - & - & 1.89\cite{dal_pino93} & x & - & x+2.1\cite{capaz94}\r
+ %Reference & 3.40\cite{al-mushadani03}, 3.31\cite{leung99} & 3.45\cite{al-mushadani03}, 3.31\cite{leung99} & 3.43\cite{leung99} & - & 3.53\cite{al-mushadani03} & 1.89\cite{dal_pino93} & x & - & x+2.1\cite{capaz94}\r
\end{tabular}\r
\end{ruledtabular}\r
-\caption{Formation energies of silicon and carbon point defects in crystalline silicon. The formation energies are given in eV. T denotes the tetrahedral, H the hexagonal and BC the bond-centered interstitial configuration. V corresponds to the vacancy configuration. Dumbbell configurations are abbreviated by DB.}\r
-\label{tab:sep_eof}\r
+\caption{Formation energies of silicon and carbon point defects in crystalline silicon given in eV. T denotes the tetrahedral, H the hexagonal and BC the bond-centered interstitial configuration. V corresponds to the vacancy configuration. Dumbbell configurations are abbreviated by DB.}\r
+\label{table:sep_eof}\r
\end{table*}\r
+Results obtained by the present study compare well with results from literature\cite{leung99,al-mushadani03,dal_pino93,capaz94}.\r
+Regarding intrinsic defects in Si, the $\langle 1 1 0 \rangle$ self-interstitial dumbbell is found to be the ground state configuration tersely followed by the hexagonal and tetrahedral configuration, which is the consensus view for Si$_{\text{i}}$\cite{leung99,al-mushadani03}.\r
+In the case of a C impurity, next to the C$_{\text{s}}$ configuration, in which a C atom occupies an already vacant Si lattice site, the C$_{\text{i}}$ $\langle 1 0 0 \rangle$ interstitial constitutes the energetically most favorable configuration, in which the C and Si dumbbell atoms share a regular Si lattice site.\r
+This finding is in agreement with several theoretical\cite{burnard93,leary97,dal_pino93,capaz94,jones04} and experimental\cite{watkins76,song90} investigations, which all predict this configuration as the ground state.\r
+However, to our best knowledge, no energy of formation for this type of defect based on first principles calculations has yet been explicitly stated in literature.\r
+Instead, Capaz et al.\cite{capaz94} give a relative ...\r
+... in a previous study\cite{zirkelbach10a}.\r
\r
The ground state configurations of a Si self-interstitial and a C interstitial is the $\langle 1 1 0 \rangle$ and $\langle 1 0 0 \rangle$ dumbbell respectively.\r
\r