Eine weitere M"oglichkeit des Systems zur Energieminimierung ist Diffusion. Dabei wird durch Diffusion von Kohlenstoff in amorphe Gebiete eine Reduzierung der Kohlenstoff"ubers"attigung in kristallinen Gebieten erreicht.
-\section{weitere Modellannahmen}
-\subsection{Strahlensch"adigung und nukleare Bremskraft}
-\subsection{Druckspannung und Amorphisierung}
-\subsection{Implantationsprofil und Kohlenstoffverteilung}
-\subsection{Diffusionsprozesse}
-
-\section{Simulation}
-\subsection{Vom Modell zur Simulation}
+\section{Die Simulation}
+hierkommt blafasel text ueebr montecarlo rein, zufallszahlen etc ... und dass wir deswegen weitere annahmen bzw vereinfachungen machen muessen...
+\subsection{weitere Modellannahmen}
+F"ur die Simulation sind noch weitere Annahmen n"otig, die im folgenden erkl"art werden. Dabei mu"s beachtet werden, da"s die Simulation nur das Gebiet vor der amorphen $SiC_x$-Schicht betrachtet.
+\subsubsection{Strahlensch"adigung und nukleare Bremskraft}
+Wichtig f"ur diese Arbeit war die Tatsache, da"s sich die Strahlensch"adigung wie die nukleare Bremskraft verh"alt. In dem Bereich des Simulationsfensters kann diese als linear angenommen werden.
+\subsubsection{Druckspannung und Amorphisierung}
+Die Druckspannungen auf ein Gebiet erh"ohen die Wahrscheinlichkeit, da"s es amorph wird. Die Druckspannungen sollten proportional zur Kohlenstoffkonzentration sein, und mit $\frac{1}{r^2}$ abnehmen (Druck = Kraft / Fl"ache), wobei $r$ der Abstand zum betreffenden Gebiet ist. Desweiteren nimmt die Wahrscheinlichkeitlinear eines Gebietes amorph zu werden mit der Kohlenstoffkonzentration linear zu.
+\subsubsection{Implantationsprofil und Kohlenstoffverteilung}
+Analog zur nuklearen Bremskraft
+\subsubsection{Diffusionsprozesse}
+
\subsection{Ablaufschema}
\originalTeX
\begin{figure}[thbp]