\subsubsection{Fully separable form of the pseudopotential}
+KB transformation \ldots
+\subsection{Spin-orbit interaction}
-\subsection{Spin orbit interaction}
-
-
-\subsubsection{Perturbative treatment}
-
-\subsubsection{Non-perturbative method}
-
+Relativistic effects can be incorporated in the normconserving pseudopotential method up to but not including order $\alpha^2$ with $\alpha$ being the fine structure constant.
+This is advantageous since \ldots
+With the solutions of the all-electron Dirac equations, the new pseudopotential reads
+\begin{equation}
+V(r)=\sum_{l,m}\left[
+\ket{l+\frac{1}{2},m+{\frac{1}{2}}}V_{l,l+\frac{1}{2}}(r)
+\bra{l+\frac{1}{2},m+{\frac{1}{2}}} +
+\ket{l-\frac{1}{2},m-{\frac{1}{2}}}V_{l,l-\frac{1}{2}}(r)
+\bra{l-\frac{1}{2},m-{\frac{1}{2}}}
+\right] \text{ .}
+\end{equation}
+By defining an averaged potential weighted by the different $j$ degeneracies of the $\ket{l\pm\frac{1}{2}}$ states
+\begin{equation}
+\bar{V}_l(r)=\frac{1}{2l+1}\left(
+l V_{l,l-\frac{1}{2}}(r)+(l+1)V_{l,l+\frac{1}{2}}(r)\right)
+\end{equation}
+and a potential describing the difference in the potential with respect to the spin
+\begin{equation}
+V^{\text{SO}}_l(r)=\frac{2}{2l+1}\left(
+V_{l,l+\frac{1}{2}}(r)-V_{l,l-\frac{1}{2}}(r)\right)
+\end{equation}
+the total potential can be expressed as
+\begin{equation}
+V(r)=\sum_l \ket{l}\left[\bar{V}_l(r)+V^{\text{SO}}_l(r)LS\right]\bra{l}
+\text{ ,}
+\end{equation}
+where the first term correpsonds to the mass velocity and Darwin relativistic corrections and the latter is associated with the spin-orbit (SO) coupling.