\usepackage{upgreek}
+%\newrgbcolor{hred}{0.9 0.13 0.13}
+%\newrgbcolor{hblue}{0.13 0.13 0.9}
+\newrgbcolor{hred}{1.0 0.0 0.0}
+\newrgbcolor{hblue}{0.0 0.0 1.0}
+
\newcommand{\headdiplom}{
\begin{pspicture}(0,0)(0,0)
-\rput(6.0,0.2){\psframebox[fillstyle=gradient,gradbegin=red,gradend=white,gradlines=1000,gradmidpoint=1,linestyle=none]{
+\rput(6.0,0.2){\psframebox[fillstyle=gradient,gradbegin=hred,gradend=white,gradlines=1000,gradmidpoint=1,linestyle=none]{
\begin{minipage}{14cm}
\hfill
\vspace{0.7cm}
\newcommand{\headphd}{
\begin{pspicture}(0,0)(0,0)
-\rput(6.0,0.2){\psframebox[fillstyle=gradient,gradbegin=blue,gradend=white,gradlines=1000,gradmidpoint=1,linestyle=none]{
+\rput(6.0,0.2){\psframebox[fillstyle=gradient,gradbegin=hblue,gradend=white,gradlines=1000,gradmidpoint=1,linestyle=none]{
\begin{minipage}{14cm}
\hfill
\vspace{0.7cm}
% no vertical centering
\centerslidesfalse
-\ifnum1=0
-
% intro
\begin{slide}
\end{center}
\begin{pspicture}(0,0)(0,0)
-\rput(6.0,7.0){\rnode{init}{\psframebox[fillstyle=gradient,gradbegin=red,gradend=white,gradlines=1000,gradmidpoint=1.0,linestyle=none]{
+\rput(6.0,7.0){\rnode{init}{\psframebox[fillstyle=gradient,gradbegin=hred,gradend=white,gradlines=1000,gradmidpoint=1.0,linestyle=none]{
\begin{minipage}{11cm}
{\color{black}Diploma thesis}\\
\underline{Monte Carlo} simulation modeling the selforganization process\\
}}}
\end{pspicture}
\begin{pspicture}(0,0)(0,0)
-\rput(6.0,-0.5){\rnode{init}{\psframebox[fillstyle=gradient,gradbegin=blue,gradend=white,gradmidpoint=1.0,gradlines=1000,linestyle=none]{
+\rput(6.0,-0.5){\rnode{init}{\psframebox[fillstyle=gradient,gradbegin=hblue,gradend=white,gradmidpoint=1.0,gradlines=1000,linestyle=none]{
\begin{minipage}{11cm}
{\color{black}Doctoral studies}\\
Classical potential \underline{molecular dynamics} simulations \ldots\\
\begin{minipage}{3.7cm}
\begin{pspicture}(0,0)(0,0)
-\rput(1.7,0.2){\psframebox[fillstyle=gradient,gradbegin=red,gradend=white,gradlines=1000,gradangle=10,gradmidpoint=1,linestyle=none]{
+\rput(1.7,0.2){\psframebox[fillstyle=gradient,gradbegin=hred,gradend=white,gradlines=1000,gradangle=10,gradmidpoint=1,linestyle=none]{
\begin{minipage}{3.7cm}
\hfill
\vspace{0.7cm}
{\bf Limitations related to the short range potential}\\[0.2cm]
Cut-off function limits interaction to next neighbours\\
$\Rightarrow$ Overestimated unphysical high forces of next neighbours
+ (factor: $2.4--3.4$)
\vspace{1.4cm}
\end{slide}
-% continue here
-\fi
-
\begin{slide}
\headphd
\end{itemize}
\end{minipage}
-% md support
+% conclusions
\begin{pspicture}(0,0)(0,0)
\rput(6.5,5.0){\psframebox[fillstyle=solid,opacity=0.5,fillcolor=black]{
\begin{minipage}{14cm}
\begin{minipage}{9cm}
\vspace{0.2cm}
\small
-{\color{blue}\bf Stretched structures of SiC in c-Si}
+\begin{center}
+{\color{gray}\bf Conclusions on SiC precipitation}\\[0.1cm]
+{\Huge$\lightning$} {\color{red}\ci{}} --- vs --- {\color{blue}\cs{}} {\Huge$\lightning$}\\
+\end{center}
\begin{itemize}
-\item Consistent to precipitation model involving \cs{}
-\item Explains annealing behavior of high/low T C implants
+\item Stretched coherent SiC structures\\
+$\Rightarrow$ Precipitation process involves {\color{blue}\cs}
+\item Explains annealing behavior of high/low T C implantations
\begin{itemize}
- \item Low T: highly mobiel \ci{}
- \item High T: stable configurations of \cs{}
+ \item Low T: highly mobile {\color{red}\ci}
+ \item High T: stable configurations of {\color{blue}\cs}
+ \end{itemize}
+\item Role of \si{}
+ \begin{itemize}
+ \item Vehicle to rearrange \cs --- [\cs{} \& \si{} $\leftrightarrow$ \ci]
+ \item Building block for surrounding Si host \& further SiC
+ \item Strain compensation \ldots\\
+ \ldots Si/SiC interface\\
+ \ldots Within stretched coherent SiC structure
\end{itemize}
\end{itemize}
-$\Rightarrow$ High T $\leftrightarrow$ IBS conditions far from equilibrium\\
-$\Rightarrow$ Precipitation mechanism involving \cs{}
-
+\vspace{0.2cm}
+\centering
+\psframebox[linecolor=blue,linewidth=0.05cm]{
+\begin{minipage}{7cm}
+\centering
+Precipitation mechanism involving \cs\\
+High T $\leftrightarrow$ IBS conditions far from equilibrium\\
\end{minipage}
+}
+\end{minipage}
+\vspace{0.2cm}
}}
\end{pspicture}
\end{slide}
+% skip high T / C conc ... only here!
+\ifnum1=0
+
\begin{slide}
{\large\bf
\end{slide}
-\end{document}
-\ifnum1=0
+% skipped high T / C conc
+\fi
\begin{slide}
- {\large\bf
- Summary and Conclusions
- }
-
- \scriptsize
+{\large\bf
+ Summary / Outlook
+}
-%\vspace{0.1cm}
+\small
-\framebox{
-\begin{minipage}[t]{12.9cm}
- \underline{Pecipitation simulations}
- \begin{itemize}
- \item High C concentration $\rightarrow$ amorphous SiC like phase
- \item Problem of potential enhanced slow phase space propagation
- \item Low T $\rightarrow$ C-Si \hkl<1 0 0> dumbbell dominated structure
- \item High T $\rightarrow$ C$_{\text{sub}}$ dominated structure
- \item High T necessary to simulate IBS conditions (far from equilibrium)
- \item Precipitation by successive agglomeration of \cs (epitaxy)
- \item \si{}: vehicle to form \cs{} \& supply of Si \& stress compensation
- (stretched SiC, interface)
- \end{itemize}
+\begin{pspicture}(0,0)(12,1.0)
+\psframebox[fillstyle=gradient,gradbegin=hred,gradend=white,gradlines=1000,gradmidpoint=1.0,linestyle=none]{
+\begin{minipage}{11cm}
+{\color{black}Diploma thesis}\\
+ \underline{Monte Carlo} simulation modeling the selforganization process\\
+ leading to periodic arrays of nanometric amorphous SiC precipitates
\end{minipage}
}
-
-%\vspace{0.1cm}
-
-\framebox{
-\begin{minipage}{12.9cm}
- \underline{Defects}
- \begin{itemize}
- \item DFT / EA
- \begin{itemize}
- \item Point defects excellently / fairly well described
- by DFT / EA
- \item C$_{\text{sub}}$ drastically underestimated by EA
- \item EA predicts correct ground state:
- C$_{\text{sub}}$ \& \si{} $>$ \ci{}
- \item Identified migration path explaining
- diffusion and reorientation experiments by DFT
- \item EA fails to describe \ci{} migration:
- Wrong path \& overestimated barrier
- \end{itemize}
- \item Combinations of defects
- \begin{itemize}
- \item Agglomeration of point defects energetically favorable
- by compensation of stress
- \item Formation of C-C unlikely
- \item C$_{\text{sub}}$ favored conditions (conceivable in IBS)
- \item \ci{} \hkl<1 0 0> $\leftrightarrow$ \cs{} \& \si{} \hkl<1 1 0>\\
- Low barrier (\unit[0.77]{eV}) \& low capture radius
- \end{itemize}
- \end{itemize}
+\end{pspicture}\\[0.4cm]
+\begin{pspicture}(0,0)(12,2)
+\psframebox[fillstyle=gradient,gradbegin=hblue,gradend=white,gradmidpoint=1.0,gradlines=1000,linestyle=none]{
+\begin{minipage}{11cm}
+{\color{black}Doctoral studies}\\
+ Classical potential \underline{molecular dynamics} simulations \ldots\\
+ \underline{Density functional theory} calculations \ldots\\[0.2cm]
+ \ldots on defect formation and SiC precipitation in Si
\end{minipage}
}
-
-\begin{center}
-{\color{blue}
-\framebox{Precipitation by successive agglomeration of \cs{}}
+\end{pspicture}\\[0.5cm]
+\begin{pspicture}(0,0)(12,3)
+\psframebox[fillstyle=solid,fillcolor=white,linestyle=solid]{
+\begin{minipage}{11cm}
+\vspace{0.2cm}
+{\color{black}\bf How to proceed \ldots}\\[0.1cm]
+MC $\rightarrow$ classical potential MD $\rightarrow$ Ground-state DFT \ldots
+\begin{itemize}
+ \renewcommand\labelitemi{$\ldots$}
+ \item beyond LDA/GGA methods
+\end{itemize}
+Investigation of structure \& structural evolution \ldots
+\begin{itemize}
+ \renewcommand\labelitemi{$\ldots$}
+ \item electronic/optical properties
+ \item electronic correlations
+ \item non-equilibrium systems
+\end{itemize}
+\end{minipage}
}
-\end{center}
+\end{pspicture}\\[0.5cm]
\end{slide}
\end{document}
-\fi