ci often and soon
[lectures/latex.git] / nlsop / diplom / ergebnisse.tex
index a3b27c6..1e553d0 100644 (file)
@@ -71,10 +71,10 @@ Im Anschluss werden die Simulationen "uber den gesamten Implantationsbereich dis
     F"ur den Vergleich mit der TEM-Aufnahme wurde der linke Teil der Aufnhame abgeschnitten und auf $100$ Bildpunkte in der H"ohe skaliert.
     \begin{figure}[!h]
     \includegraphics[width=12cm]{tem_cmp_ls.eps}
-    \caption{Vergleich der Linescans der fouriertransformierten TEM-Aufnahme und des Simulationsergebnisses}
+    \caption{Vergleich der Linescans der fouriertransformierten TEM-Aufnahme und der Cross-Section der Simulation}
     \label{img:tem_cmp_ls}
     \end{figure}
-    Abbildung \ref{img:tem_cmp_ls} zeigt den Vergleich der Linescans der fouriertransformierten TEM-Aufnahme und des Simulationsergebisses.
+    Abbildung \ref{img:tem_cmp_ls} zeigt den Vergleich der Linescans der fouriertransformierten TEM-Aufnahme und der Cross-Section der Simulation.
     Im Gegensatz zur Simulation hat die TEM-Aufnahme eine sehr hohe Helligkeit, was ein grosses Maxima bei der Ortsfrequenz Null zur Folge hat.
     Daher sind Maxima anderer Frequenzen schlecht zu erkennen.
     Bei genauerem Hinsehen erkennt man, zum Beispiel f"ur die Ortsfrequenz $f_y = -0,125 nm^{-1}$, ein lokales Maximum in der Intensit"at.
@@ -137,7 +137,32 @@ Im Anschluss werden die Simulationen "uber den gesamten Implantationsbereich dis
     Eine "ahnlich grosse Zahl erh"alt man tats"achlich ducrch Abz"ahlen der Lamellen am linken Rand der Cross-Section.
     Die Fouriertransformierte stellt also ein geeignetes Mittel zur objektiven Messung der \dq Lamellarigkeit\dq{} dar.
 
-    EDIT: "Anderung von $d_v$.
+    \begin{figure}[h]
+    \includegraphics[width=12cm]{low_to_high_dv.eps}
+    \caption{Simulationsergebnisse f"ur a) $d_v=10$, b) $d_v=100$, c) $d_v=1000$, d) $d_v=10000$. Simulationsparameter: $p_b=0$, $p_c=0,0001$, $p_s=0,003$, $d_r=0,5$, $s=2 \times 10^{7}$}
+    \label{img:dv_influence}
+    \end{figure}
+    \begin{figure}[h]
+    \includegraphics[width=12cm]{ls_dv_cmp.eps}
+    \caption{Linescan der fouriertransformierten Cross-Sections von Simulationen mit $d_v=10$ und $d_v=10000$. Simulationsparameter: $p_b=0$, $p_c=0,0001$, $p_s=0,003$, $d_r=0,5$, $s=2 \times 10^{7}$}
+    \label{img:dv_ls}
+    \end{figure}
+    Neben der Diffusionsrate $d_r$ beschreibt der Simulationparameter $d_v$ den Diffusionsprozess.
+    Dieser gibt an wie oft der Diffusionsschritt ausgef"uhrt wird.
+    In Abbildung \ref{img:dv_influence} sind Simulationsergebnisse f"ur verschiedene $d_v$ abgebildet.
+    Erstaunlichwerweise scheint dieser Parameter keinen allzu grossen Einfluss auf das Ergebnis zu haben.
+    Das liegt daran, dass selbst die Anzahl von $10 \times 10^{3}$ Schritten im Vergleich zur Anzahl der W"urfel im Target von $50 \times 50 \times 100 = 25 \times 10^{4}$ sehr viel keiner ist.
+    Damit ist es sehr wahrscheinlich, dass vor einem erneuten Sto"s in einem Volumen, ein Diffusionsprozess mit den Nachbarn stattfand.
+
+    Man erkennt eine minimale Abnahme des lamellaren Tiefenbereichs von ungef"ahr $10 nm$.
+    Ausserdem kann man eine kleine Zunahme der Periodenl"ange der Lamellen mit zunehmendem $d_v$ erahnen.
+    Dies erkennt man am besten beim Vergleich der zwei Extrema $d_v=10$ und $d_v=10000$.
+
+    In Abbildung \ref{img:dv_ls} sind die Linescans der fouriertransformierten Cross-Sections $a)$ und $b)$ aus Abbildung \ref{img:dv_influence} zu sehen.
+    Die Zunahme der Periode macht sich hier durch die Verschiebung der Intensit"atsmaxima zu h"oheren Frequenzen bemerkbar.
+    W"ahrend der Linescan f"ur $d_v=10000$ (blau) schon f"ur Frequenzen unter $0,1 nm^{-1}$ lokale Intensit"atsmaxima zeigt, erkennt man Maxima des Linescans f"ur $d_v=10$ (rot) bei h"oheren Frequenzen.
+    Am wohl auff"alligsten ist dabei der Peak bei $f_z \approx 0,14 nm^{-1}$.
+    Dies entspricht einer Wellenl"ange von ungef"ahr $7,14 nm$.
 
     \subsection{Einfluss der Druckspannungen}
 
@@ -159,10 +184,10 @@ Im Anschluss werden die Simulationen "uber den gesamten Implantationsbereich dis
 
     \begin{figure}[h]
     \includegraphics[width=12cm]{ls_cmp_002-004.eps}
-    \caption{Linescan der fouriertransformierten Simulationsergebnisse mit $p_s=0,002$ und $p_s=0,004$. Simulationsparameter: $p_b=0$, $p_c=0,0001$, $d_r=0,5$, $d_v=10$, $s=2 \times 10^{7}$}
+    \caption{Linescan der fouriertransformierten Cross-Sections von Simulationen mit $p_s=0,002$ und $p_s=0,004$. Simulationsparameter: $p_b=0$, $p_c=0,0001$, $d_r=0,5$, $d_v=10$, $s=2 \times 10^{7}$}
     \label{img:p_s_per}
     \end{figure}
-    In Abbildung \ref{img:p_s_per} sind die Linescans der fouriertransformierten Cross-Sections mit $p_s=0,002$ und $p_s=0,004$ zu sehen.
+    In Abbildung \ref{img:p_s_per} sind die Linescans der fouriertransformierten Cross-Sections mit $p_s=0,002$ und $p_s=0,004$ zu sehen (Abbildung \ref{img:p_s_influence} (b,d)).
     Zun"achst f"allt das sch"arfere Maxima bei der Ortsfrequenz Null f"ur h"ohere Werte von $p_s$ auf.
     Ausserdem erkennt man eine Verschiebung der Maxima zu gr"osseren Frequenzen mit steigendem $p_s$.
     Dieses Ergebnis erkennt man auch sehr gut an den Cross-Sections der Simulationen.
@@ -209,6 +234,13 @@ Im Anschluss werden die Simulationen "uber den gesamten Implantationsbereich dis
 
     Im Folgenden wird die zweite Version des Programms diskutiert.
     Hier wird "uber den gesamten Implantatiosnbereich, von $0$ bis $700 nm$ simuliert.
+    Da nukleare Bremskraft und Implantationsprofil in einer Tiefe von $700 nm$ auf Null abgefallen sind, ist der Sputtervorgang m"oglich.
+    Jeder Simulationsdurchlauf entspricht tats"achlich einem implantierten Ion, da die mittlere Anzahl von St"o"sen die ein Ion im Target erf"ahrt ausgef"uhrt wird.
+    Sto"skoordinaten werden entsprechend der nuklearen Bremskraft gew"ahlt, der Einbau des Kohlenstoffs erfolgt gem"a"s des Implantationsprofils.
+    Die Sputterroutine wird gestartet sobald die implantierte Dosis der Dosis entspricht, die $3 nm$ Abtrag zur Folge hat.
+
+    In ersten Simulationsl"aufen wurde zun"achst versucht die durchgehende amorphe $SiC_x$-Schicht zu reproduzieren.
+    
 
     \subsection{Reproduzierbarkeit der Dosisentwicklung}