typos fixed 1-4
[lectures/latex.git] / nlsop / diplom / ergebnisse.tex
index fac0eba..28554e2 100644 (file)
@@ -106,7 +106,7 @@ Im Anschluss werden die Simulationen "uber den gesamten Implantationsbereich dis
     Die beiden Querschnitte in Abbildung \ref{img:diff_influence} a) und c) entsprechen identischen Simulationsdurchl"aufen, wobei in Abbildung \ref{img:diff_influence} c) die Diffusion in $z$-Richtung unterdr"uckt wurde.
     Lamellare Strukturen beobachtet man nur im Falle mit Diffusion in $z$-Richtung.
     Diese bewirkt, dass amorphe Volumina den kristallinen Gebieten in benachbarten Ebenen den Kohlenstoff entziehen.
-    Die Amorphisierungswahrscheinlichkeit in diesen Volumina steigt durch den Gewinn von Kohelnstoff an, und wegen \eqref{eq:p_ac_genau} werden sie stabiler gegen"uber Rekristallisation.
+    Die Amorphisierungswahrscheinlichkeit in diesen Volumina steigt durch den Gewinn von Kohlenstoff an, und wegen \eqref{eq:p_ac_genau} werden sie stabiler gegen"uber Rekristallisation.
     Die Wahrscheinlichkeit f"ur die Amorphisierung kristalliner Zellen in der selben Ebene steigt auf Grund der wachsenden Druckspannungen an.
     Da diese spannungsinduziert amorphisierten Gebiete fortan ebenfalls Senken f"ur diffundierenden Kohlenstoff bilden, ist damit eine immer kleiner werdende Amorphisierungswahrscheinlichkeit in den kohlenstoffarmen Nachbarebenen verbunden.
     Dieser Prozess f"ordert ganz offensichtlich die Ausbildung lamellarer Strukturen.
@@ -370,6 +370,7 @@ Im Anschluss werden die Simulationen "uber den gesamten Implantationsbereich dis
     Nachdem die Kohlenstoffkonzentration ihr Maximum bei $500 nm$ erreicht hat, f"allt sie steil ab.
     In einer Tiefe von ungef"ahr $570 nm$ steigt der Kohlenstoff wieder schlagartig in den kristallinen Gebieten an.
     Dies entspricht dem Ende der durchgehend amorphen Schicht.
+    Auff"allig ist, dass hier das Maximum der Kohlenstoffkonzentration in kristallinen Gebieten sehr viel h"oher ist, als das an der vorderen Grenzfl"ache.
     Die Konzentrationen in kristallinen und amorphen Gebieten gehen ab einer Tiefe von ungef"ahr $600 nm$ wieder in die Gesamtkonzentration "uber.
     Die Ausscheidungen sind wie die Ausscheidungen oberhalb $250 nm$ Tiefe instabil gegen"uber Rekristallisation.
 
@@ -382,7 +383,7 @@ Im Anschluss werden die Simulationen "uber den gesamten Implantationsbereich dis
     Die Werte f"ur Simulation und Experiment liegen in der selben Gr"o"senordnung und betragen $12$ bis $16 at.\&$.
      Desweiteren stimmen, wie im Experiment, die Konzentrationen an vorderer und hinterer Grenzfl"ache bis auf einen Fehler von maximal $3 at.\%$ gut "uberein.
     Dies ist ein erneuter Hinweis, dass die tiefenabh"angige nukleare Bremskraft, die an der hinteren Grenzfl"ache sehr viel geringer als an der vorderen ist, eine untergeordnete Rolle im Amorphisierungsprozess einnimmt, und das "Uberschreiten einer Schwellkonzentration mit dem Amorphisierungsprozess verbunden ist.
-    Die Kohlenstoffkonzentration ist der dominierende Faktor f"ur die Bildung der durchgehenden amorphen $SiC_x$-Schicht.
+    Die Kohlenstoffkonzentration ist der dominierende Faktor f"ur die Bildung der durchgehend amorphen $SiC_x$-Schicht.
 
     \begin{table}[h]
     \begin{center}
@@ -433,11 +434,11 @@ Im Anschluss werden die Simulationen "uber den gesamten Implantationsbereich dis
     Die Ausdehnung der durchgehend amorphen Schicht stimmt gut mit den in \cite{maik_da} experimentell bestimmten Werten in Abbildung \ref{img:temdosis} "uberein.
     Auf Grund des verschobenen Kohlenstoffmaximums in dem verwendeten Implantationsprofil der {\em SRIM 2003.26} Version, sind die Lage der amorphen Schicht und das Kohlenstoffmaximum um ungef"ahr $30 nm$ tiefer vorzufinden.
     Desweiteren ist der Bereich amorpher Einschl"usse in Abbildung \ref{img:position_sim} abgebildet.
-    Diese bestehen in der Simulation schon kurz unterhalb der Oberfl"ache des Targets.
+    Diese existieren, wenn auch nur sehr wenige, in der Simulation schon kurz unterhalb der Oberfl"ache des Targets.
     Mit optischen und elektronenmikroskopischen Messungen aus \cite{joerg_hecking} wurde die Sensitivit"at einer TEM-Messung auf amorphe Ausscheidungen bestimmt.
     Demnach muss mindestens $23\%$ amorpher Anteil vorhanden sein, um amorphe Ausscheidungen im TEM detektieren zu k"onnen.
     Um einen Vergleich mit den experimentell bestimmten Daten aus Abbildung \ref{img:temdosis} anstellen zu k"onnen, bestimmt {\em NLSOP} nach diesem Wert den Beginn der amorphen Ausscheidungen.
-    In der Simulation liegt dieser konstant f"ur jede Dosis ungef"ahr $50 nmm$ "uber dem Beginn der durchgehend amorphen Schicht.
+    In der Simulation liegt dieser konstant f"ur jede Dosis ungef"ahr $50 nm$ "uber dem Beginn der durchgehend amorphen Schicht.
     Dieser Abstand wird experimentell zwar f"ur eine Dosis von $8,5 \times 10^{17} cm^{-2}$ gemessen, jedoch nimmt der Abstand zur Schicht mit abnehmender Dosis zu, wie in Abbildung \ref{img:temdosis} zu sehen ist.
     Nach Angaben des Authors aus \cite{maik_da} war es jedoch sehr schwer den Beginn der amorphen Ausscheidungen aus den TEM-Aufnahmen zu ermitteln.
     Daher muss gerade f"ur kleine Dosen eine gro"se Fehlertoleranz angenommen werden.
@@ -470,7 +471,7 @@ Im Anschluss werden die Simulationen "uber den gesamten Implantationsbereich dis
     Die hintere Grenzfl"ache der durchgehenden Schicht bleibt ungef"ahr in der selben Tiefe, da hier das Kohlenstoffprofil sehr schnell abf"allt.
     Das Entgegenwirken durch den erh"ohten Einfluss der ballistische Amorphisierung ist sehr gering.
 
-    Im Hinblick auf die zu grosse amorphe Schicht in Abbildung \ref{img:dose_devel} b) bei einer Dosis von $2,1 \times 10^{17} cm^{-2}$ wurde in \ref{img:var_sim_paramters} $d)$ der Einfluss der kohlenstoffinduzierten Amorphisierung auf $p_c=0,0001$ reduziert.
+    Im Hinblick auf die zu grosse amorphe Schicht in Abbildung \ref{img:dose_devel} b) bei einer Dosis von $2,1 \times 10^{17} cm^{-2}$ wurde in \ref{img:var_sim_paramters} d) der Einfluss der kohlenstoffinduzierten Amorphisierung auf $p_c=0,0001$ reduziert.
     Hierdurch sollte sich eine insgesamt d"unnere Schicht ergeben, die im Mittel n"aher an der Oberfl"ache liegt.
     Wie erwartet nimmt die Ausdehnung der amorphen Schicht ab.
     Mit knapp $120 nm$ ist sie jedoch zu klein im Vergleich mit dem experimentellen Ergebnis f"ur eine Dosis von $4,3 \times 10^{17} cm^{-2}$.
@@ -483,7 +484,7 @@ Im Anschluss werden die Simulationen "uber den gesamten Implantationsbereich dis
     Erstaunlicherweise bewirkt dies eine schnelle und fast komplette Amorphisierung selbst solcher Bereiche im Target, in denen nur wenig Kohlenstoff vorhanden ist.
     Die amorphe Phase erstreckt sich wieder um das Kohlenstoffmaximum.
     Die Konzentrationen am vorderen und hinteren Interface betragen beide ungef"ahr $1,8 at. \%$.
-    Da in den Beitrag f"ur die spannungsinduzierte Amorphisierung auch die Kohelnstoffkonzentration eingeht, ist dies nicht weiter verwunderlich.
+    Da in den Beitrag f"ur die spannungsinduzierte Amorphisierung auch die Kohlenstoffkonzentration eingeht, ist dies nicht weiter verwunderlich.
     Ballistisch entstandene zusammenh"angende amorphe Gebiete "uben in Abbildung \ref{img:var_sim_paramters} e) mit einen um den Faktor $10$ erh"ohten Parameter $p_s$ extrem hohe Druckspannungen aufeinander aus, dass Rekristallisation selbst bei geringem Kohlenstoffanteil sehr unwahrscheinlich ist.
     Der Diffusionsprozess verliert somit an Bedeutung.
     Dies f"uhrt letztendlich zur kompletten Amorphisierung des Bereichs, der mindestens $1,8 at.\%$ Kohlenstoff enth"alt.
@@ -517,6 +518,8 @@ Im Anschluss werden die Simulationen "uber den gesamten Implantationsbereich dis
     Essentiell f"ur die Bildung lamellarer Strukturen ist die Diffusion, die, wenn sie zu stark abl"auft, die Bildung einer durchgehnd amorphen Schicht verhindert und nur Lamellen entstehen l"asst.
     Zu hohe Werte f"ur den Parameter der Druckspannungen f"uhren dagegen zu einer kompletten Amorphisierung des kohlenstoffhaltigen Bereichs im Target.
 
+    \clearpage
+
     \section{Herstellung grosser Bereiche lamellar geordneter Strukturen durch Mehrfachimplantation}
 
     \printimg{h}{width=14cm}{impl_2mev.eps}{Durch {\em SRIM 2003.26} ermitteltes Implantationsprofil von $2 MeV$ $C^+$ in Silizium.}{img:impl_2mev}
@@ -547,42 +550,78 @@ Im Anschluss werden die Simulationen "uber den gesamten Implantationsbereich dis
     Die Sputterroutine wird nicht ausgef"uhrt, was allerdings keine gro"se Auswirkung auf das Ergebnis hat.
     Einerseits ist die nukleare Bremskraft f"ur $MeV$-Ionen deutlich kleiner als f"ur die Ionen der Implantation im $keV$ Bereich, was eine wesentlich kleinere Sputterrate zur Folge haben sollte.
     Andererseits kann das nukleare Bremskraftprofil im Bereich der durchs Sputtern verursachten Tiefenverschiebung von einigen $nm$ als nahezu konstant angesehen werden.
-    Unter der Annahme, dass die Implantation mit der selben Dosisrate stattfindet, werden ausserdem die Diffusionsparameter beibehalten.
-
-    \begin{figure}[h]
-    \includegraphics[width=12cm]{2nd_impl_4_3.eps}
-    \caption{Dosisentwicklung des zweiten Implantationsschrittes mit $2 MeV$ $C^+$ in $180 keV$ $C^{+}$ implantiertes Silizium mit der Dosis $4,3 \times 10^{17} cm^{-2}$.}
-    \label{img:2nd_impl_4_3}
-    \end{figure}
-    Abbildung \ref{img:2nd_impl_4_3} zeigt die Dosisentwicklung des zweiten Implantationsschrittes mit $2 MeV$ $C^+$.
-    Als Ausgangskonfiguration wurde eine Dosis von $4,3 \times 10^{17} cm^{-2}$ von $180 keV$ schnellen Kohlenstoff ins Silizium gew"ahlt.
-    Es reicht schon eine Dosis von $5,4 \times 10^{14} cm{-2}$ (Abbildung \ref{img:2nd_impl_4_3} $e)$) im zweiten Implantationsschritt f"ur eine komplette Amorphisierung des kohlenstoffhaltigen Bereichs.
+    Unter der Annahme, dass die Implantation mit der selben Dosisrate stattfindet, werden au"serdem die Diffusionsparameter beibehalten.
+    F"ur die Erzeugung einer Ausgangskonfiguration kann das Programm {\em nlsop\_make\_cryst} (Anhang \ref{section:hilfsmittel}) in einem beliebigen gespeicherten Simulationsergebnis den Status jedes W"urfels auf kristallin ab"andern.
+    Die Kohlenstoffkonzentration wird nicht ver"andert.
+    Man muss ein Ergebnis verwenden, das mit einer Dosis die der gew"unschten Ausgangskonfiguration entspricht implantiert wurde, jedoch kaum amorphe Ausscheidungen, die durch den Diffusionsprozess das Implantationsprofil abge"andert h"atten, aufweisen.
+
+    \printimg{h}{width=15cm}{2nd_impl_4_3.eps}{Entwicklung der Verteilung amorpher Gebiete mit zunehmender Dosis im zweiten Implantationsschrittes mit $2 MeV$ $C^+$-Ionen in $180 keV$ $C^{+}$ implantiertes Silizium mit der Dosis $4,3 \times 10^{17} cm^{-2}$.}{img:2nd_impl_4_3}
+    Abbildung \ref{img:2nd_impl_4_3} zeigt die Entwicklung der Verteilung amorpher Gebiete mit zunehmender Dosis w"ahrend des zweiten Implantationsschrittes mit $2 MeV$ $C^+$-Ionen.
+    F"ur die Ausgangsverteilung wurde ein erster Implantationsschritt mit der Dosis $4,3 \times 10^{17} cm^{-2}$ gew"ahlt.
+    Wie Abbildung \ref{img:2nd_impl_4_3} e) zeigt, reicht schon eine Dosis von $5,4 \times 10^{14} cm{-2}$ im zweiten Implantationsschritt f"ur eine komplette Amorphisierung des kohlenstoffhaltigen Bereichs.
     Diese Ausgangskonzentration ist also nicht geeignet f"ur die Herstellung breiter lamellarer Ausscheidungen.
     Es ist zu viel Kohlenstoff vorhanden.
     Der kohlenstoffhaltige Bereich amorphisiert schon vor dem ersten Diffusionsschritt, der notwendig f"ur die Selbstorganisation der lamellaren Ausscheidungen ist.
 
-    \begin{figure}[h]
-    \includegraphics[width=12cm]{2nd_impl_1_1.eps}
-    \caption{Dosisentwicklung des zweiten Implantationsschrittes mit $2 MeV$ $C^+$ in $180 keV$ $C^{+}$ implantiertes Silizium mit der Dosis $1,1 \times 10^{17} cm^{-2}$. Die maximale Anzahl der Durchl"aufe von $100 \times 10^{6}$ entspricht einer implantierten Dosis von $2,71 \times 10^{17} cm^{-2}$.}
-    \label{img:2nd_impl_1_1}
-    \end{figure}
-    In Abbildung \ref{img:c_distrib_v2} erkennt man, dass die Kohlenstoffkonzentration im Bereich lamellarer Ausscheidungen zwischen $10$ und $20 at. \%$ liegt.
-    Durch Vergleich mit den Kohlenstoffkonzentrationsmaxima f"ur verschiedene Dosen in Abbildung \ref{img:carbon_sim}, bietet sich die Verwendung einer mit $1,1 \times 10^{17} cm^{-2}$ implantierten Probe an, die dem Profil mit $40 \times 10^{6}$ Durchl"aufen entspricht.
-    Das Ergebnis ist in Abbildung \ref{img:2nd_impl_1_1} dargestellt.
-    Nach $20 \times 10^{6}$ Schritten (Abbildung \ref{img:2nd_impl_1_1} $a)$), was einer Dosis von $0,54 \times 10^{17} cm^{-2}$ entspricht, sind ballistisch entstandedne amorphe Ausscheidungen zu erkennen.
+    \printimg{h}{width=15cm}{2nd_impl_1_1.eps}{Entwicklung amorpher Ausscheidungen mit steigender Dosis des zweiten Implantationsschrittes mit $2 MeV$ $C^+$-Ionen in $180 keV$ $C^{+}$ implantiertes Silizium mit der Dosis $1,1 \times 10^{17} cm^{-2}$. Die maximale Anzahl der Durchl"aufe von $300 \times 10^{6}$ entspricht einer implantierten Dosis von $8,13 \times 10^{17} cm^{-2}$.}{img:2nd_impl_1_1}
+    In Abbildung \ref{img:c_distrib_v2} erkennt man, dass die Kohlenstoffkonzentration im Bereich lamellarer Ausscheidungen zwischen $10$ und $17 at.\%$ liegt.
+    Durch Vergleich mit den Kohlenstoffkonzentrationsmaxima f"ur verschiedene Dosen in Abbildung \ref{img:carbon_sim} bietet sich die Verwendung einer mit $1,1 \times 10^{17} cm^{-2}$ implantierten Probe an, die dem Profil mit $40 \times 10^{6}$ Durchl"aufen entspricht.
+    F"ur die Erzeugung einer solchen Ausgangskonfiguration reicht es die Targettemperatur auf $200 \, ^{\circ} \mathrm{C}$ zu erh"ohen \cite{basic_phys_proc}.
+    Das Ergebnis des $MeV$-Implantationsschrittes ist in Abbildung \ref{img:2nd_impl_1_1} dargestellt.
+    Nach $20 \times 10^{6}$ Schritten (Abbildung \ref{img:2nd_impl_1_1} a)), was einer Dosis von $0,54 \times 10^{17} cm^{-2}$ entspricht, sind zuf"allig verteilte amorphe Ausscheidungen zu erkennen.
     Es hat sich keine durchgehende Schicht gebildet.
-    Die kohlenstoffinduzierte Amorphisierung reicht allein nicht aus um den kompletten kohlenstoffhaltigen Bereich zu Amorphisieren.
+    Die kohlenstoffinduzierte Amorphisierung reicht allein nicht aus um den kompletten kohlenstoffhaltigen Bereich zu amorphisieren.
     Lamellen sind noch nicht zu erkennen.
     Auf Grund der spannungsinduzierten Amorphisierung werden bei steigender Dosis bevorzugt lateralle Nachbarn amorpher Gebiete amorphisiert beziehungsweise gegen Rekristallisation stabilisiert.
-    Die Diffusionsroutine kann ausgef"uhrt werden, bevor das Target komplett amorphisiert ist.
-    Diese f"ordert den Selbstorganisationsprozess, da der diffundierte Kohlenstoff den kohelnstoffinduzierten Anteil der Amorphisierungswahrscheinlichkeit und die Spannungen auf die Nachbarn erh"oht.
+    Die Diffusion f"uhrt zu einer wirksamen Umverteilung von Kohlenstoff, bevor das Target komplett amorphisiert ist.
+    Diese f"ordert den Selbstorganisationsprozess, da der diffundierte Kohlenstoff den kohlenstoffinduzierten Anteil der Amorphisierungswahrscheinlichkeit und die Spannungen auf die Nachbarn erh"oht.
     Gleichzeitig sinkt die Amorphisierungswahrscheinlichkeit in den anliegenden kristallinen Ebenen.
-    Man erkennt sehr sch"on die Dosisentwicklung zu immer sch"arfer werdenden Lamellen, deren Tiefenbereich zunimmt (Abbildung \ref{img:2nd_impl_1_1} $b)$-$e)$).
-    Man kann davon ausgehen, dass bei fortgef"uhrter Implantation, die lamellare Struktur noch sch"arfer wird.
-    Da kaum Kohelnstoff der $2 MeV$-Implantation in dem betrachteten Tiefenbereich zur Ruhe kommt, erwartet man keine Bildung einer durchgehenden Schicht auf Kosten des lamellaren Bereichs.
-    Es k"onnte prinzipiell so lang implantiert werden, bis der kristalline Teil oberhalb der amorphen Lamellen durch Sputtern abgetragen ist.
+    In den Abbildungen \ref{img:2nd_impl_1_1} b) bis e) erkennt man sehr sch"on die Entwicklung der Lamellen, die mit zunehmender Dosis immer sch"arfer werden.
+    Man kann davon ausgehen, dass bei fortgef"uhrter Implantation die lamellare Struktur noch sch"arfer wird.
+    Da kaum Kohlenstoff der $2 MeV$-Implantation in dem betrachteten Tiefenbereich zur Ruhe kommt, erwartet man keine Bildung einer durchgehenden Schicht auf Kosten des lamellaren Bereichs.
     Ein freigelegter Bereich scharf strukturierter amorpher lamellarer Ausscheidungen ist zu erwarten.
 
     Die Herstellung breiter Bereiche von amorphen lamellaren Auscheidungen durch einen zweiten Implantationsschritt ist laut Simulationsergebnis demnach m"oglich.
-    Als Ausgangskonfiguration muss eine Probe verwendet werden, die einen Kohelnstoffgehalt von $10$ bis $20 at. \%$ im Implantationsmaximum hat.
+    Als Ausgangskonfiguration muss eine Probe verwendet werden, die einen Kohlenstoffgehalt von ungef"ahr $10 at. \%$ im Implantationsmaximum hat.
+
+    F"ur die Herstellung noch gr"o"serer lamellarer Schichten ist eine m"oglichst breite, konstante und kastenf"ormige Verteilung des Kohlenstoffs ideal.
+    Ein solches Profil erzeugt man durch mehrfache Implantationsdurchl"aufe, indem man mit einer Ionenenergie von $180 keV$ beginnt und diese Schritt f"ur Schritt bis auf $10 keV$ reduziert \cite{unknown}.
+    Dadurch kann ein ann"ahernd plateauf"ormiger Verlauf der Kohlenstoffkonzentration erzeugt werden, der bei ungef"ahr $500 nm$ im wesentlichen dem Abfall des $180 keV$-Profils entspricht.
 
+    \printimg{h}{width=15cm}{multiple_impl_cp.eps}{Ideale plateauf"ormige Kohlenstoffverteilung mit Abfall entsprechend des $180 keV$ $C^+$-Implantationsprofils ab einer Tiefe von $500 nm$, erzeugt durch das Programm {\em nlsop\_create\_cbox} und experimentell realisiert durch mehrfaches Implantieren mit Ionenenergien von $10$ bis $180 keV$.}{img:cbox}
+    Ein solches Profil kann f"ur die Simulation mit dem Programm {\em nlsop\_create\_cbox} erzeugt werden.
+    W"ahlt man eine maximale Konzentration von $10 at.\%$, so erh"alt man das Implantationsprofil in Abbildung \ref{img:cbox}.
+
+    Die Entwicklung der amorphen Lamellen unter Bestrahlung des Targets mit der in Abbildung \ref{img:cbox} gegebenen Kohlenstoffverteilung mit $2 MeV$ $C^+$-Ionen ist in Abbildung \ref{img:broad_l} zu sehen.
+    \begin{sidewaysfigure}\centering
+    \includegraphics[height=13cm]{multiple_impl.eps}
+    \caption{Entwicklung amorpher Ausscheidungen "uber den weiten Bereich des Kohlenstoffplateaus aus Abbildung \ref{img:cbox} mit zunehmender Dosis des $MeV$-Implantationsschrittes. Die maximale Anzahl der Durchl"aufe in $f)$ von $300 \times 10^{6}$ entspricht einer implantierten Dosis von $8,13 \times 10^{17} cm^{-2}$.}
+    \label{img:broad_l}
+    \end{sidewaysfigure}
+    \printimg{h}{width=14cm}{multiple_ls.eps}{Linescans der fouriertransformierten $64 \times 64$ Pixel grossen Ausschnitte der Querschnittsaufnahmen aus Abbildung \ref{img:broad_l} $a)$, $b)$ und $f)$.}{img:broad_ls}
+    Nach $50 \times 10^6$ Durchl"aufen (Abbildung \ref{img:broad_l} a)), was einer Dosis von $1,36 \times 10^{17} cm^{-2}$ entspricht, sind zuf"allig verteilte Ausscheidungen in dem Bereich des Kohlenstoffplateaus entstanden.
+    Wie erwartet hat sich keine durchgehend amorphe Schicht gebildet.
+    Wie im oberen Fall reicht die kohlenstoffinduzierte Amorphisierung nicht aus um den kohlenstoffhaltigen Bereich komplett zu amorphisieren.
+    Die Gebiete sind noch sehr instabil gegen"uber Rekristallisation.
+    Durch die Druckspannungen werden laterale Nachbarn amorpher Gebiete mit h"oherer Warscheinlichkeit amorphisieren.
+    Mit steigender Dosis und somit fortgef"uhrter Diffusion beginnen sich so lamellare Ausscheidungen zu stabilisieren.
+    Die Organisation und Stabilisierung der lamellaren Ausscheidungen erkennt man bereits bei der doppelten Dosis in Abbildung \ref{img:broad_l} b).
+    In den Lamellen befindliche amorphe Gebiete werden auf Grund der hohen Druckspannungen nur noch sehr unwahrscheinlich rekristallisieren.
+    Dagegen werden alleinstehende amorphe Gebiete in kristalliner Umgebung fr"uher oder sp"ater rekristallisieren.
+    Der Kohlenstoff diffundiert in die anliegende amorphe Nachbarschaft, so dass die Wahrscheinlichkeit der Amorphisierung in der kristallinen Ebene sinkt.
+    Daher beobachtet man mit steigender Dosis die deutlichere Abgrenzung der amorphen und kristallinen Lamellen (Abbildung \ref{img:broad_l} b) bis f)).
+    Die Ausscheidungen werden sch"arfer.
+
+    Dies erkennt man auch in Abbildung \ref{img:broad_ls}.
+    Die Abbildung zeigt die Linescans von den fouriertransformierten $64 \times 64$ gro"sen Ausschnitten der Querschnittsaufnahmen a), b) und f) aus Abbildung \ref{img:broad_l}.
+    F"ur die erste Anzahl an Durchl"aufen ($s=50 \times 10^6$) erkennt man kein Maximum in der Intensit"at ungleich der Ortsfrequenz Null.
+    Mit steigender Ordnung des lamellaren Charakters erkennt man einen deutlichen Anstieg der Intensit"at f"ur Frequenzen im Bereich $f_z = 0,13 nm^{-1}$.
+    Die Intensit"aten steigen nur langsam mit der Dosis an, was man auch schon aus den Abbildungen \ref{img:broad_l} c) bis f) erahnen kann.
+    Die Sch"arfe der Ausscheidungen, die bereits in Abbildung \ref{img:broad_l} c) sehr hoch ist, "andert sich kaum noch.
+    Weiterhin ist keine Frequenzverschiebung des Maximums zu erkennen, was auf einen konstanten Abstand der Lamellen, sofern sie existieren, der unabh"angig von der Dosis ist, hinweist.
+    Auff"allig ist auch die Ausdehnung der amorphen Ausscheidungen in das Gebiet der stark abfallenden Kohlenstoffkonzentration mit steigender Dosis.
+    Das Ende des lamellaren Bereichs w"achst von $550$ auf ungef"ahr $600 nm$ an.
+    Auf Grund der niedrigen Kohlenstoffkonzentration in diesem Bereich ist klar, dass ein Ordnungsprozess hin zu kohlenstoffhaltigen Ausscheidungen l"angere Zeit ben"otigt.
+
+    Die Herstellung breiter Bereiche lamellarer Struktur ist nach dem Simulationsergebnis demnach m"oglich.
+    Die Ausgangskonfiguration des Targets, welches mit $2 MeV$ $C^+$-Ionen bestrahlt wird, sollte einen Kohlenstoffverlauf wie in Abbildung \ref{img:cbox} aufweisen und kristallin sein.