finished position and spreading of a phases part
[lectures/latex.git] / nlsop / diplom / ergebnisse.tex
index 19c3213..8d4ab21 100644 (file)
@@ -277,7 +277,7 @@ Im Anschluss werden die Simulationen "uber den gesamten Implantationsbereich dis
     Man erkennt eine gute "Ubereinstimmung zwischen Experiment und Simulation.
 
     In der in Abbildung \ref{img:dose_devel} a) dargestellten XTEM-Aufnahme erscheint der Bereich h"ochster Gittersch"adigung dunkel.
-    Die dunkelen Kontraste sind nach \cite{maik_da} auf Verspannungen von Defekten zur"uckzuf"uhren.
+    Die dunklen Kontraste sind nach \cite{maik_da} auf Verspannungen von Defekten zur"uckzuf"uhren.
     Zus"atzlich hierzu zeigen detaillierte TEM-Untersuchungen \cite{maik_da}, dass hier etwa $3 nm$ gro"se amorphe Einschl"usse auftreten, die teilweise zusammenwachsen.
     In den TEM-Aufnahmen f"ur h"ohere Dosen wurden die Proben so im Mikroskop orientiert, dass die kristallinen Bereiche in Bragg-Orientierung stehen und auf Grund des Beugungskontrastes im wesentlichen dunkel erscheinen, amorphe Schichten dagegen sehr hell.
     F"ur diese Dosen sind die XTEM-Aufnahmen direkt mit den Simulationsergebnissen visuell vergleichbar.
@@ -286,116 +286,114 @@ Im Anschluss werden die Simulationen "uber den gesamten Implantationsbereich dis
     Bis auf eine geringe Differenz in der Tiefenposition des Bandes amorpher Ausscheidungen wird das experimentelle Ergebnis von der Simulation sehr gut reproduziert.
     Die etwas gr"ossere Ausdehnung der amorphen Gebiete in der Simulation liegt in diesem Fall am Unterschied der implantierten Dosis ($1,0 \times 10^{17} cm^{-2}$) und der "aquivalenten simulierten Dosis ($\approx 1,1 \times 10^{17} cm^{-2}$).
     Die Tatsache, dass sich bei dieser geringen Dosis weder im Experiment noch in der Simulation eine durchgehend amorphe Schicht gebildet hat, spricht daf"ur, dass die vorliegenden Amorphisierungsmechanismen nicht f"ur die Bildung einer durchgehenden Schicht ausreichen.
+    Die meisten amorphen Einschl"usse haben sich nahe dem Maximum des Kohlenstoffprofils bei $500 nm$ und nicht nahe dem Maximum der nuklearen Bremskraft bei $400 nm$ gebildet.
+    Dies spricht daf"ur, dass die kohlenstoffinduzierte Amorphisierung eine wichtige Rolle im Amorphisierungsprozess "ubernimmt.
    
-    Bei einer Dosis von $2,1 \times 10^{17} cm^{-2}$ (Abbildung \ref{img:dose_devel} $b)$) hat sich sowohl in Simulation als auch im Experiment eine durchgehende amorphe $SiC_x$-Schicht gebildet.
-    Bei dieser Dosis ist die Abweichung zwischen Simulation und Experiment am gr"o"sten.
-    Zum einen liegt die Schicht in der Simulation knapp $50 nm$ tiefer.
-    Zum anderen ist sie mit $125 nm$ rund $60 nm$ dicker als im Experiment.
-
-    Bei einer Dosis von $3,3 \times 10^{17} cm^{-2}$ (Abbildung \ref{img:dose_devel} $c)$) ist die Schichtdicke im Experiment auf $180 nm$ angewachsen.
+    Bei einer Dosis von $2,1 \times 10^{17} cm^{-2}$ (Abbildung \ref{img:dose_devel} $b)$) hat sich sowohl in Simulation als auch im Experiment eine durchgehend amorphe $SiC_x$-Schicht gebildet.
+    Allerdings ist die durchgehend amorphe Schicht im Experiment viel d"unner und liegt in erster N"aherung in der oberen H"alfte des Tiefenbereichs, in dem die Simulation eine geschlossene amorphe Schicht ergibt.
+    In der unteren H"alfte dieses Bereichs zeigt die XTEM-Aufnahme wieder besonders dunkle Kontraste, so dass hier wohl eine besonders hohe Dichte von Kristalldefekten und m"oglicherweise wieder einzelne amorphe Ausscheidungen vorliegen, aber keine durchgehend amorphe Schicht.
+    Beide Bereiche zusammen sind etwa so dick wie die simulierte amorphe Schicht.
+    Die Tiefenpositionen unterscheiden sich um $30 nm$.
+    Vorallem an der vorderen Grenzfl"ache der amorphen Schicht zeigt die Simulation in "Ubereinstimmung mit dem Experiment individuelle amorphe Volumina ohne Lamellencharakter.
+
+    Bei einer Dosis von $3,3 \times 10^{17} cm^{-2}$ (Abbildung \ref{img:dose_devel2} $a)$) ist die Schichtdicke im Experiment auf $180 nm$ angewachsen.
     Dasselbe gilt f"ur die Simulation.
+    Wieder f"allt die Differenz in der Tiefenposition von ungef"ahr $40 nm$ zwischen Simulation und Experiment auf.
     Ausserdem erkennt man die Bildung lamellarer Ausscheidungen an der vorderen Grenzfl"ache.
-    Diese lamellaren Strukturen erkennt man ebenfalls im Simulationsergebnis.
-    Wieder f"allt der Shift in der Tiefe von ungef"ahr $40 nm$ zwischen Simulation und Experiment auf.
+    Diese lamellaren Strukturen erkennt man ebenfalls im Experiment.
     
-    In Abbildung \ref{img:dose_devel} $d)$ ist die Schichtdicke nach einer Dosis von $4,3 \times 10^{17} cm^{-2}$ auf grob $200 nm$ angewachsen.
-    Die lamellare Struktur wird deutlicher und der Tiefenbereich in dem sie vorkommen gr"osser.
+    In Abbildung \ref{img:dose_devel2} $b)$ ist die Schichtdicke nach einer Dosis von $4,3 \times 10^{17} cm^{-2}$ auf grob $200 nm$ angewachsen.
+    Die lamellare Struktur wird deutlicher und der Tiefenbereich, in dem sie vorkommt, gr"osser.
     Ausserdem werden die amorph/kristallinen Grenzfl"achen sch"arfer.
     Dieses Ergebnis stimmt sehr gut mit der Simulation "uberein.
     Zum einen w"achst die Schichtdicke im gleichem Ma"se an.
     Weiterhin werden die lamellaren Strukturen besser erkennbar und ihre Ausdehnung in $z$-Richtung steigt an.
     Vergleicht man die untere amorph/kristalline Grenzfl"ache mit dem Simulationsergebnis der vorangegangen Dosis, so erkennt man auch die Entwicklung zur sch"arferen Grenzfl"ache mit zunehmender Dosis.
 
+    Auf Grund der wichtigen Rolle der kohlenstoffinduzierten Amorphisierung kann die Differenz der Tiefenposition der amorphen Ausscheidungen beziehungsweise der durchgehend amorphen Schicht erkl"art werden.
+    Die Ursache liegt an dem um $30 nm$ verschobenen Maximum im Kohlenstoffprofil der verwendeten {\em SRIM 2003.26} Version zur {\em TRIM 92} Version, welche besser zu den experimentellen Ergebnissen passt.
+    Der Tiefenschift der Ausscheidungen in der Simulation entspricht ziemlich genau der Differenz der Kohlenstoffmaxima der zwei {\em TRIM} Versionen.
+
     Zusammenfassend ist zu sagen, dass trotz einiger Unterschiede, was die Ausdehnung der amorphen Schicht bei der Dosis $2,1 \times 10^{17} cm^{-2}$ und den Tiefenshift f"ur alle Dosen angeht, die Simulation das Experiment recht gut beschreibt.
     Man erh"alt die amorphen Ausscheidungen, die f"ur niedrige Dosen noch keine durchgehende Schicht bilden.
     Bei Erh"ohung der Dosis bildet sich eine durchgehende Schicht ohne Vorhandensein von lamellaren Strukturen.
     Diese bilden sich erst nach weiterer Erh"ohung der Dosis.
     Gleichzeitig dehnt sich die durchgehende Schicht aus.
-    Nach Implantation der kompletten Dosis wird die amorph/kristalline Grenzfl"ache sch"arfer, die lamellaren Strukturen deutlicher und der Tiefenbreich in dem sie auftreten gr"osser.
+    Nach Implantation der kompletten Dosis wird die amorph/kristalline Grenzfl"ache sch"arfer, die lamellaren Strukturen deutlicher und der Tiefenbreich, in dem sie auftreten, gr"osser.
 
     \subsection{Kohlenstoffverteilung}
 
-    \begin{figure}[h]
-    \includegraphics[width=12cm]{carbon_sim.eps}
-    \caption{Kohlenstofftiefenprofile der Simulation f"ur verschiedene Dosen mit $p_b=0,01$, $p_c=0,001$, $p_s=0,0001$, $d_v=1 \times 10^{6}$, $d_r=0,05$.}
-    \label{img:carbon_sim}
-    \end{figure}
-    Im Folgenden sollen die Kohlenstofftiefenprofile betrachtet und mit experimentell gewonnenen Daten aus \cite{maik_da}, die mittels Rutherford-R"uckstreu-Spektroskopie bestimmt wurden, verglichen werden.
-
-    Abbildung \ref{img:carbon_sim} zeigt die aus den Simulationsergebnissen gewonnenen Kohlenstoffverteilungen in Abh"angigkeit der Tiefe f"ur verschiedene Dosen.
+    \printimg{h}{width=15cm}{carbon_sim.eps}{Kohlenstofftiefenprofile der Simulation f"ur $40 \times 10^6$, $80 \times 10^6$, $120 \times 10^6$ und $158 \times 10^6$ Durchl"aufen mit $p_b=0,01$, $p_c=0,001$, $p_s=0,0001$, $d_v=1 \times 10^{6}$, $d_r=0,05$.}{img:carbon_sim}
+    Im Folgenden sollen die Kohlenstofftiefenprofile betrachtet werden.
+    Abbildung \ref{img:carbon_sim} zeigt die aus den Simulationsergebnissen gewonnenen Kohlenstoffverteilungen in Abh"angigkeit von der Tiefe f"ur verschiedene Dosen.
     Auff"allig ist die Verschiebung des Kohlenstoffmaximums mit steigender Dosis.
     Diese ist durch das Absputtern der Oberfl"ache zu erkl"aren.
     
-    \begin{figure}[h]
-    \includegraphics[width=12cm]{carbon_max_cmp.eps}
-    \caption{Vergleich der Kohlenstoffmaxima aus Simulation (rot) und Experiment (blau) in Abh"angigkeit der implantierten Dosis.}
-    \label{img:carbon_cmp}
-    \end{figure}
-    Abbildung \ref{img:carbon_cmp} zeigt den Vergleich der Kohlenstoffmaxima aus Simulation und Experiment.
-    Im Falle der Simulation verschiebt sich das Maximum w"ahrend der Implantation der gesamten Dosis um ungef"ahr $30 nm$ zu niedrigeren Tiefen.
-    Die Abweichung der, aus der Simulation erhaltenen, zu den experiemntell bestimmten Maxima betr"agt $60$ bis $90 nm$.
-    Auff"allig ist auch die st"arker negative Steigung der linear gen"aherten Verschiebung des Kohlenstoffmaximums der Simulation im Gegensatz zum Experiment.
-    Extrapoliert man die, durch die drei experimentell bestimmten Messpunkte gelegte Gerade, kann man das Maximum f"ur die Dosis $D \approx 1,0 \times 10^{17} cm^{-2}$ absch"atzen.
-    W"ahrend der selben Dosis verschiebt sich hier das Maximum nur um etwa $15 nm$, was der H"alfte der Verschiebung bei der Simulation enspricht.
-
-    Die unterschiedliche Steigung weist auf dosisabh"angige Bremskr"afte und ein daraus resultierendes dosisabh"angiges Implantationsprofil hin.
-    {\em TRIM} betrachtet jedoch ein statisches Target und liefert somit ein nukleares Bremskraft- und Implantationsprofil, welches diese Effekte nicht beinhaltet.
-
-    Auch der anf"angliche Unterschied in der Kohelnstoffkonzentration zwischen Simulation und Experiment ist auf den Unterschied des durch {\em TRIM} ermittelten Implantationsprofils zum realen Profil zur"uckzuf"uhren.
-    Es sind aber auch Ungenauigkeiten bei der experimentellen Ermittlung der Kohlenstoffverteilung aus den RBS-Spektren denkbar.
-    Mit dem Shift in der Kohlenstoffverteilung ist der Tiefenunterschied der Lage der amorphen Schicht erkl"art.
-
-    \begin{figure}[h]
-    \includegraphics[width=12cm]{ac_cconc_ver2.eps}
-    \caption{Cross-Section und Tiefenprofil des Kohlenstoffs der Simulation aus Abschnitt \ref{subsection:reproduced_dose}. Helle Gebiete sind amorph, dunkle Gebiete kristallin. Kohlenstoff in kristallinen Gebieten (gr"un), in amorphen Gebieten (rot) und gesamter Kohlenstoff (schwarz) sind abgebildet.}
-    \label{img:c_distrib_v2}
-    \end{figure}
-    In Abbildung \ref{img:c_distrib_v2} ist die Cross-Section aus Abschnitt \ref{subsection:reproduced_dose} mit dem zugeh"origem Implantationsprofil gezeigt.
-    Zun"achst befindet sich der komplette Kohlenstoff in den kristallinen Gebieten.
-    Ab einer Tiefe von $150 nm$ sind amorphe Ausscheidungen zu erkennen.
-    Der Kohlenstoffgehalt in den kristallinen Volumen sinkt.
-    Gleichzeitigt steigt der Kohlenstoffgehalt in den amorphen Gebieten.
+    \printimg{!h}{width=15cm}{ac_cconc_ver2_new.eps}{$a)$ Querschnittsaufnahme und $b)$ Tiefenprofil des Kohlenstoffs der Simulation aus Abschnitt \ref{subsection:reproduced_dose}. In $a)$ sind helle Gebiete amorph, dunkle Gebiete kristallin. In $b)$ ist der Kohlenstoff in kristallinen Gebieten gr"un, in amorphen Gebieten rot und der gesamte Kohlenstoff schwarz dargestellt.}{img:c_distrib_v2}
+    In Abbildung \ref{img:c_distrib_v2} ist die Querschnittsaufnahme aus Abschnitt \ref{subsection:reproduced_dose} mit dem zugeh"origem Implantationsprofil gezeigt.
+
+    %Zun"achst befindet sich der komplette Kohlenstoff in den kristallinen Gebieten.
+    Die Kohlenstoffkonzentration steigt entsprechend dem Implantationsprofil an.
+    Zwischen $0$ und $250 nm$ entspricht die Konzentration in den amorphen Gebieten genau der Konzentration in den kristallinen Gebieten.
+    Die Tatsache, dass stabile Ausscheidungen ihrer kristallinen Umgebung Kohlenstoff entzogen h"atten und somit das Konzentrationsprofil in den amorphen und kristallinen Gebieten im Gegensatz zum Gesamtprofil ver"andert h"atten, spricht daf"ur, dass die Ausscheidungen in diesem Tiefenbereich rein ballistisch amorphisierte Gebiete sind, die sehr wahrscheinlich mit fortgef"uhrter Bestrahlung rekristallisieren, noch bevor sie sich durch Kohlenstoffdiffusion gegen"uber Rekristallisation stabilisieren k"onnen.
+    %Ab einer Tiefe von $150 nm$ sind amorphe Ausscheidungen zu erkennen.
+    %Der Kohlenstoffgehalt in den kristallinen Volumen sinkt.
+    %Gleichzeitigt steigt der Kohlenstoffgehalt in den amorphen Gebieten.
+
+    Ab einer Tiefe von $250 nm$ steigt die Konzentration in den amorphen Gebieten st"arker an als das Gesamtprofil, im Gegensatz zur Konzentration in den kristallinen Gebieten, die weniger stark ansteigt.
+    In diesem Tiefenbereich existieren Ausscheidungen, die nicht unmittelbar rekristallisieren und so Kohlenstoff durch den Diffusionsprozess gewinnen k"onnen, der zur weiteren Stabilisierung f"uhrt.
     Ab einer Tiefe von $350 nm$ haben sich lamellare amorphe Ausscheidungen gebildet.
-    Im Kohlenstoffprofil sind Schwankungen in der Gesamtkonzentration und der Konzentration in amorphen Gebieten zu sehen (siehe Pfeil).
-    Die Ursache liegt wieder an der komplement"aren Anordnung der amorphen und kristallinen Gebiete in aufeinander folgenden Ebenen.
+    Im Kohlenstoffprofil sind Schwankungen in der Gesamtkonzentration und der Konzentration in amorphen Gebieten zu sehen (siehe Pfeil), wobei die Konzentration in den amorphen Gebieten immer oberhalb der Gesamtkonzentration liegt.
+    Die Ursache daf"ur ist die komplement"are Anordnung der amorphen und kristallinen Gebiete in aufeinander folgenden Ebenen.
     Es wechseln sich Ebenen mit hohen und niedrigen amorphen Anteil ab.
-    Wie in Abschnitt \ref{subsection:c_distrib} ist diese Anordnung eine Folge der Diffusion.
+    Ein h"oherer Anteil an amorphen Gebieten in einer Ebene bewirkt nicht nur das Ansteigen der Gesamtkonzentration an Kohlenstoff in dieser Ebene, sondern auch das der amorphen Gebiete, da mehr Senken f"ur den Kohlenstoff vorhanden sind.
+    Wie in Abschnitt \ref{subsection:c_distrib} ist diese Anordnung also eine Folge der Diffusion.
     Die amorphen Gebiete entziehen benachbarten Ebenen den Kohlenstoff.
     Die lokale Amorphisierungswahrscheinlichkeit wird erh"oht w"ahrend sie in der Nachbarebene kleiner wird.
     Die lamellaren Strukturen entstehen.
-    Kurz vor $400 nm$ sinkt die Kohlenstoffkonzentration in den kristallinen Gebieten auf Null ab.
+    Weiterhin erkennt man an den schwarz gestrichelten Linien in Abbildung \ref{img:c_distrib_v2} b), dass in den, der durchgehend amorphen Schicht am n"ahesten gelegenen amorphen Lamellen, eine ann"ahernd gleich hohe Konzentration an Kohlenstoff, wie an der vorderen und hinteren Grenzfl"ache zur durchgehend amorphen Schicht vorhanden ist.
+    Diese charakteristische Konzentration wird einerseits f"ur die Bildung einer durchgehenden Schicht und andererseits f"ur die Bildung stabiler Lamellen im Gegensatz zu einzelnen stabilen Ausscheidungen ben"otig.
+    Die Schwankungen und eine weiter ansteigende Differenz zum Gesamtprofil erkennt man ebenfalls in der Konzentration in den kristallinen Gebieten.
+    Die Schwankungen sind auch in den kristallinen Gebieten nachvollziehbar, da bei einem grossen Anteil an amorphen Gebieten in einer Ebene nur wenig kristalline Gebiete, denen Kohlenstoff entzogen werden kann, existieren.
+    Demnach erh"alt man Maxima in der Kohlenstoffkonzentration der kristallinen Gebiete genau bei den Maxima f"ur die Gesamtkonzentration und der Konzentration der amorphen Gebiete.
+    Diese Maxima sind in Abbildung \ref{img:c_distrib_v2} durch die blauen gestrichelten Linien markiert.
+    Man kann eine S"attigungsgrenze zwischen $8,0$ und $9,8 at.\%$ f"ur Kohlenstoff in kristallinen Silizium unter den gegebenen Implantationsbedingungen ablesen.
+    Dies stimmt sehr gut mit dem experimentell bestimmten Wert von $?? at.\%$ \cite{unknown} "uberein.
+
+    In einer Tiefe von $400 nm$ sinkt die Kohlenstoffkonzentration in den kristallinen Gebieten schlagartig auf Null ab.
     Der gesamte Kohlenstoff befindet sich in den amorphen Gebieten.
-    Hier beginnt die durchgehende amorphe Schicht.
-    Nachdem die Kohlenstoffkonzentration ihr Maximum bei $500 nm$ erreicht hat f"allt sie steil ab.
-    In einer Tiefe von $580 nm$ beginnt der Kohlenstoff wieder in den kristallinen Gebieten anzuwachsen.
-    Dies entspricht dem Ende der durchgehenden amorphen Schicht.
-    Die Konzentration im Kristallinen steigt, bis wieder der gesamte Kohlenstoff in den kristallinen Gebieten ist. 
+    Es existieren keine kristallinen Gebiete mehr.
+    Hier beginnt die durchgehend amorphe Schicht.
+    Die Konzentration in den amorphen Gebieten entspricht genau der Gesamtkonzentration.
 
-    \begin{figure}[h]
-    \begin{center}
-    \includegraphics[width=7cm]{z_zplus1_ver2.eps}
-    \end{center}
-    \caption{Amorph/Kristalline Struktur in zwei aufeinander folgenden Ebenen $z$ und $z+1$ im Tiefenbereich der lamellaren Strukturen.}
-    \label{img:z_zplus1_ver2}
-    \end{figure}
-    Abbildung \ref{img:z_zplus1_ver2} zeigt die amorph/kristalline Struktur in zwei aufeinander folgenden Ebenen $z$ und $z+1$ im Tiefenbereich der lamellaren Strukturen.
-    Sie best"atigt die Vermutung der komplement"aren Anordnung amorpher und kristalliner Gebiete in aufeinander folgenden Ebene in diesem Tiefenbereich.
-    Dies hebt erneut die Wichtigkeit der Diffusion f"ur den Selbstorganisationsprozess der lamellaren Strukturen hervor.
+    Nachdem die Kohlenstoffkonzentration ihr Maximum bei $500 nm$ erreicht hat, f"allt sie steil ab.
+    In einer Tiefe von ungef"ahr $570 nm$ steigt der Kohlenstoff wieder schlagartig in den kristallinen Gebieten an.
+    Dies entspricht dem Ende der durchgehend amorphen Schicht.
+    Die Konzentrationen in kristallinen und amorphen Gebieten gehen ab einer Tiefe von ungef"ahr $600 nm$ wieder in die Gesamtkonzentration "uber.
+    Die Ausscheidungen sind wie die Ausscheidungen oberhalb $250 nm$ Tiefe instabil gegen"uber Rekristallisation.
 
     \subsection{Position und Ausdehnung der amorphen Phase}
 
-    \begin{figure}[h]
-    \includegraphics[width=12cm]{position_al.eps}
-    \caption{Simulierte Position und Ausdehnung der amorphen Schicht in Abh"angigkeit der Dosis (blau, rot). Dosisabh"angiges Kohlenstoffmaximum (gr"un).}
-    \label{img:position_sim}
-    \end{figure}
-    Abbildung \ref{img:position_sim} zeigt die, aus der Simulation ermittelte Position und Ausdehnung der durchgehenden amorphen $SiC_x$-Schicht.
-    Zus"atzlich ist der Verlauf des Kohelnstoffmaximums eingezeichnet.
-    Die amorphe Schicht erstreckt sich um das Kohlenstoff-Verteilungsmaximum.
-    Die Ausdehnung stimmt gut mit den Werten aus \cite{maik_da} "uberein.
-    Die dort gefundene Breite der Schicht bei einer Dosis von $2,1 \times 10^{17} cm^{-2}$ liegt mit knappen $100 nm$ schon n"aher an den $125 nm$ Breite aus dem Simulationsergebnis.
-    Dieser Wert ist jedoch nicht im Einklang mit der TEM-Aufnahme.
-    Wie erwartet ist ausserdem der $50 nm$-Shift in der Position der amorphen Schicht vorhanden.
+    \printimg{h}{width=8cm}{z_zplus1_ver2_new.eps}{Amorph/Kristalline Struktur in zwei aufeinander folgenden Ebenen $z=127$ und $z=128$ im Tiefenbereich der lamellaren Strukturen der Simulation mit $p_b=0,01$, $p_c=0,001$, $p_s=0,0001$, $d_r=0,5$, $d_v=10^6$ und $s=158 \times 10^6$ (Abbildung \ref{img:var_sim_paramters} $b)$).}{img:z_zplus1_ver2}
+    Abbildung \ref{img:z_zplus1_ver2} zeigt die amorph/kristalline Struktur in zwei aufeinander folgenden Ebenen $z$ und $z+1$ in einem Tiefenbereich mit lamellaren Strukturen.
+    Sie best"atigt die Vermutung der komplement"aren Anordnung amorpher und kristalliner Gebiete in aufeinander folgenden Ebene in diesem Tiefenbereich.
+    Dies hebt erneut die Wichtigkeit der Diffusion f"ur den Selbstorganisationsprozess der lamellaren Strukturen hervor.
+
+    \printimg{!h}{width=15cm}{position_al.eps}{Position und Ausdehnung amorpher Phasen (graue Fl"achen) und Kohlenstoffkonzentrationsmaximum (rot) in Abh"angigkeit der Dosis in der Simulation aus Abbildung \ref{img:dose_devel}/\ref{img:dose_devel2}.}{img:position_sim}
+    Abbildung \ref{img:position_sim} zeigt die aus der Simulation ermittelte Position und Ausdehnung der amorphen Phasen.
+    Zus"atzlich ist der Verlauf des Kohlenstoffmaximums eingezeichnet.
+    Die amorphe Schicht erstreckt sich um das Kohlenstoffverteilungsmaximum.
+    Die Ausdehnung der durchgehend amorphen Schicht stimmt gut mit den in \cite{maik_da} experimentell bestimmten Werten in Abbildung \ref{img:temdosis} "uberein.
+    Auf Grund des verschobenen Kohlenstoffmaximums in dem verwendeten Implantationsprofil der {\em SRIM 2003.26} Version, sind die Lage der amorphen Schicht und das Kohlenstoffmaximum um ungef"ahr $30 nm$ tiefer vorzufinden.
+    Desweiteren ist der Bereich amorpher Einschl"usse in Abbildung \ref{img:position_sim} abgebildet.
+    Diese bestehen in der Simulation schon kurz unterhalb der Oberfl"ache des Targets.
+    Mit optischen und elektronenmikroskopischen Messungen aus \cite{joerg_hecking} wurde die Sensitivit"at einer TEM-Messung auf amorphe Ausscheidungen bestimmt.
+    Demnach muss mindestens $23\%$ amorpher Anteil vorhanden sein, um amorphe Ausscheidungen im TEM detektieren zu k"onnen.
+    Um einen Vergleich mit den experimentell bestimmten Daten aus \ref{img:temdosis} anstellen zu k"onnen, bestimmt {\em NLSOP} nach diesem Wert den Beginn der amorphen Ausscheidungen.
+    In der Simulation liegt dieser konstant f"ur jede Dosis ungef"ahr $50 nmm$ "uber dem Beginn der durchgehend amorphen Schicht.
+    Dieser Abstand wird experimentell zwar f"ur eine Dosis von $8,5 \times 10^{17} cm^{-2}$ gemessen, jedoch nimmt der Abstand zur Schicht mit abnehmender Dosis zu, wie in Abbildung \ref{img:temdosis} zu sehen ist.
+    Nach Angaben des Authors aus \cite{maik_da} war es jedoch sehr schwer den Beginn der amorphen Ausscheidungen aus den TEM-Aufnahmen zu ermitteln.
+    Daher muss gerade f"ur kleine Dosen eine gro"se Fehlertoleranz angenommen werden.
     
     Die Tabellen \ref{table:interface_conc_exp} und \ref{table:interface_conc_sim} fassen die Kohlenstoffkonzentration an der vorderen und hinteren Grenzfl"ache f"ur Experiment und Simulation in Abh"angigkeit der Dosis zusammen.
     \begin{table}[h]