more ergebnisse + danksagung
[lectures/latex.git] / nlsop / diplom / ergebnisse.tex
index 1e553d0..989c976 100644 (file)
@@ -195,8 +195,9 @@ Im Anschluss werden die Simulationen "uber den gesamten Implantationsbereich dis
     Nimmt zum Beispiel die Intensit"at der Frequenz $f_z \approx 0,13 nm^{-1}$, was einer Periodenl"ange von $7,7 nm$ entspricht ab, so steigt die Intensit"at f"ur die Frequenz $f_z \approx 0,16 nm^{-1}$, was einer Periode von $6,3 nm$ entspricht.
 
     \subsection{Verteilung des Kohlenstoffs im Target}
+    \label{subsection:c_distrib}
 
-    \begin{figure}[h]
+    \begin{figure}[!h]
     \begin{center}
     \includegraphics[width=7cm]{really_all_z-z_plus1.eps}
     \end{center}
@@ -239,16 +240,152 @@ Im Anschluss werden die Simulationen "uber den gesamten Implantationsbereich dis
     Sto"skoordinaten werden entsprechend der nuklearen Bremskraft gew"ahlt, der Einbau des Kohlenstoffs erfolgt gem"a"s des Implantationsprofils.
     Die Sputterroutine wird gestartet sobald die implantierte Dosis der Dosis entspricht, die $3 nm$ Abtrag zur Folge hat.
 
-    In ersten Simulationsl"aufen wurde zun"achst versucht die durchgehende amorphe $SiC_x$-Schicht zu reproduzieren.
+    \subsection{Reproduzierbarkeit der Dosisentwicklung}
+    \label{subsection:reproduced_dose}
+
+    \begin{figure}[!h]
+    \includegraphics[width=12cm]{dosis_entwicklung3.eps}
+    \caption{Vergleich der experimentellen und simulierten Dosisentwicklung bei a) $1,0 \times 10^{17} cm^{-2}$ bzw. $s= 40 \times 10^{6}$, b) $2,1 \times 10^{17} cm^{-2}$ bzw. $s= 80 \times 10^{6}$, c) $3,3 \times 10^{17} cm^{-2}$ bzw. $s= 120 \times 10^{6}$ und d) $4,3 \times 10^{17} cm^{-2}$ bzw. $s \approx 158 \times 10^{6}$ (exakte Dosis). Simulationsparameter: $p_b=0,01$, $p_c=0,001$, $p_s=0,0001$, $d_r=0,05$, $d_v=1 \times 10^{6}$.}
+    \label{img:dose_devel}
+    \end{figure}
+    Abbildung \ref{img:dose_devel} zeigt den Vergleich der experimentellen und simulierten Dosisentwicklung.
+    Man erkennt eine gute "Ubereinstimmung zwischen Experiment und Simulation.
+
+    Nach $1,0 \times 10^{17} cm^{-2}$ hat sich noch keine durchgehende amorphe Schicht gebildet.
+    Im Gegensatz zu den anderen TEM-Aufnahmen sind dir kristallinen Gebiete in Abbildung \ref{img:dose_devel} $a)$ auf Grund einer anderen Orientierung im TEM hell dargestellt.
+    Die dunklen Kontraste entsprechen den amorphen Gebieten.
+    Die stark dunklen Kontraste sind nach \cite{maik_da} auf Verspannungen von Defekten zur"uckzuf"uhren.
+    Diese Spannungen haben zun"achst nichts mit den hier diskutierten Druckspannungen der amorphen Gebiete zu tun.
+    Bis auf eine geringere Differenz in der Tiefe der amorphen Ausscheidungen wird das experimentelle Ergebnis von der Simulation sehr gut reproduziert.
+    Die etwas gr"ossere Ausdehnung der amorphen Gebiete in der Simulation liegt in diesem Fall am Unterschied der implantierten Dosis und der "aquivalenten simulierten Dosis ($\approx 1,1 \times 10^{17} cm^{-2}$) von ungef"ahr $0,1 \times 10^{17} cm^{-2}$.
+    Die Tatsache, dass sich bei der noch geringen Dosis weder im Experiment noch in der Simulation eine durchgehende amorphe Schicht gebildet hat, spricht daf"ur, dass die ballistische Amorphisierung allein nicht f"ur die Bildung einer durchgehenden Schicht ausreicht.
+    Der eingebrachte Kohlenstoff "ubernimmt demnach eine wichtige Rolle bei der Amorphisierungen.
+    Dies best"atigt die Modellannahmen einer kohlenstoff-induzierten Amorphisierung.
+   
+    Bei einer Dosis von $2,1 \times 10^{17} cm^{-2}$ (Abbildung \ref{img:dose_devel} $b)$) hat sich sowohl in Simulation als auch im Experiment eine durchgehende amorphe $SiC_x$-Schicht gebildet.
+    Bei dieser Dosis ist die Abweichung zwischen Simulation und Experiment am gr"o"sten.
+    Zum einen liegt die Schicht in der Simulation knapp $50 nm$ tiefer.
+    Zum anderen ist sie mit $140 nm$ rund $60 nm$ dicker als im Experiment.
+
+    Bei einer Dosis von $3,3 \times 10^{17} cm^{-2}$ (Abbildung \ref{img:dose_devel} $c)$)ist die Schichtdicke im Experiment auf $180 nm$ angewachsen.
+    Dasselbe gilt f"ur die Simulation.
+    Ausserdem erkennt man die Bildung lamellarer Ausscheidungen an der vorderen Grenzfl"ache.
+    Diese lamellaren Strukturen erkennt man ebenfalls im Simulationsergebnis.
+    Wieder f"allt der Shift in der Tiefe von ungef"ahr $40 nm$ zwischen Simulation und Experiment auf.
     
+    In Abbildung \ref{img:dose_devel} $d)$ ist die Schichtdicke nach einer Dosis von $4,3 \times 10^{17} cm^{-2}$ auf grob $200 nm$ angewachsen.
+    Die lamellare Struktur wird deutlicher und der Tiefenbereich in dem sie vorkommen gr"osser.
+    Ausserdem werden die amorph/kristallinen Grenzfl"achen sch"arfer.
+    Dieses Ergebnis stimmt sehr gut mit der Simulation "uberein.
+    Zum einen w"achst die Schichtdicke im gleichem Ma"se an.
+    Weiterhin werden die lamellaren Strukturen besser erkennbar und ihre Ausdehnung in $z$-Richtung gr"osser.
+    Vergleicht man die untere amorph/kristalline Grenzfl"ache mit dem Simulationsergebnis der vorangegangen Dosis, so erkennt man auch die Entwicklung zur sch"arferen Grenzfl"ache mit zunehmender Dosis.
+
+    Zusammenfassend ist zu sagen, dass trotz einiger Unterschiede, was die Ausdehnung der amorphen Schicht bei der Dosis $2,1 \times 10^{17} cm^{-2}$ und den Tiefenshift f"ur alle Dosen angeht, die Simulation das Experiment recht gut beschreibt.
+    Man erh"alt die amorphen Ausscheidungen, die f"ur niedrige Dosen noch keine durchgehende Schicht bilden.
+    Bei Erh"ohung der Dosis bildet sich eine durchgehende Schicht ohne Vorhandensein von lamellaren Strukturen.
+    Diese bilden sich erst nach weiterer Erh"ohung der Dosis.
+    Gleichzeitig dehnt sich die durchgehende Schicht aus.
+    Nach Implantation der kompletten Dosis wird die amorph/kristalline Grenzfl"ache sch"arfer und die lamellaren Strukturen deutlicher und der Tiefenbreich in dem sie auftreten gr"osser.
 
-    \subsection{Reproduzierbarkeit der Dosisentwicklung}
+    \subsection{Kohlenstoffverteilung}
 
-    Abbildung x zeigt den Vergleich der \ldots
+    \begin{figure}[h]
+    \includegraphics[width=12cm]{carbon_sim.eps}
+    \caption{Kohlenstofftiefenprofile der Simulation f"ur verschiedene Dosen mit $p_b=0,01$, $p_c=0,001$, $p_s=0,0001$, $d_v=1 \times 10^{6}$, $d_r=0,05$.}
+    \label{img:carbon_sim}
+    \end{figure}
+    Im Folgenden sollen die Kohlenstofftiefenprofile betrachtet und mit experimentell gewonnenen Daten aus \cite{maik_da}, die mittels Rutherford-R"uckstreu-Spektroskopie bestimmt wurden, verglichen werden.
+
+    Abbildung \ref{img:carbon_sim} zeigt die aus den Simulationsergebnissen gewonnenen Kohlenstoffverteilungen in Abh"angigkeit der Tiefe f"ur verschiedene Dosen.
+    Auff"allig ist die Verschiebung des Kohlenstoffmaximums mit steigender Dosis.
+    Diese ist durch das Absputtern der Oberfl"ache zu erkl"aren.
+    
+    \begin{figure}[h]
+    \includegraphics[width=12cm]{carbon_max_cmp.eps}
+    \caption{Vergleich der Kohlenstoffmaxima aus Simulation (rot) und Experiment (blau) in Abh"angigkeit der implantierten Dosis.}
+    \label{img:carbon_cmp}
+    \end{figure}
+    Abbildung \ref{img:carbon_cmp} zeigt den Vergleich der Kohlenstoffmaxima aus Simulation und Experiment.
+    Im Falle der Simulation verschiebt sich das Maximum w"ahrend der Implantation der gesamten Dosis um ungef"ahr $30 nm$ zu niedrigeren Tiefen.
+    Die Abweichung, der aus der Simulation erhaltenen, zu den experiemntell bestimmten Maxima betr"agt $60$ bis $90 nm$.
+    Auff"allig ist auch die st"arker negative Steigung der linear gen"aherten Verschiebung des Kohlenstoffmaximums der Simulation im Gegensatz zum Experiment.
+    Extrapoliert man die durch die drei experimentell bestimmten Messpunkte gelegte Gerade, kann man das Maximum f"ur die Dosis $D \approx 1,0 \times 10^{17} cm^{-2}$ absch"atzen.
+    W"ahrend der selben Dosis verschiebt sich hier das Maximum nur um etwa $15 nm$ was der H"alfte der Verschiebung bei der Simulation enspricht.
+
+    Die unterschiedliche Steigung weist auf dosisabh"angige Bremskr"afte und ein daraus resultierendes dosisabh"angiges Implantationsprofil hin.
+    {\em TRIM} betrachtet jedoch ein statisches Target und liefert somit ein konstantes nukleares Bremskraft- und Implantationsprofil.
 
+    Auch der anf"angliche Unterschied in der Kohelnstoffkonzentartion zwischen Simulation und Experiment ist auf Ungenauigkeiten in {\em TRIM} zur"uckzuf"uhren.
+    Es sind aber auch Ungenauigkeiten bei der experimentellen Ermittlung der Kohlenstoffverteilung aus den RBS-Spektren denkbar.
+    Mit dem Shift in der Kohlenstoffverteilung ist der Tiefenunterschied der Lage der amorphen Schicht erkl"art.
+
+    \begin{figure}[h]
+    \includegraphics[width=12cm]{ac_cconc_ver2.eps}
+    \caption{Cross-Section und Tiefenprofil des Kohlenstoffs der Simulation aus Abschnitt \ref{subsection:reproduced_dose}. Helle Gebiete sind amorph, dunkle Gebiete kristallin. Kohlenstoff in kristallinen Gebieten (gr"un), in amorphen Gebieten (rot) und gesamter Kohlenstoff (schwarz) sind abgebildet.}
+    \label{img:c_distrib_v2}
+    \end{figure}
+    In Abbildung \ref{img:c_distrib_v2} ist die Cross-Section aus Abschnitt \ref{subsection:reproduced_dose} mit zugeh"origem Implantationsprofil gezeigt.
+    Zun"achst befindet sich der komplette Kohlenstoff in den kristallinen Gebieten.
+    Ab einer Tiefe von $150 nm$ sind amorphe Ausscheidungen zu erkennen.
+    Der Kohlenstoffgehalt in den kristallinen Volumen sinkt.
+    Gleichzeitigt steigt der Kohlenstoffgehalt in den amorphen Gebieten.
+    Ab einer Tiefe von $350 nm$ haben sich lamellare, amorphe Ausscheidungen gebildet.
+    Im Kohlenstoffprofil sind Schwankungen in der Gesamtkonzentration und der Konzentration in amorphen Gebieten zu sehen (siehe Pfeil).
+    Die Ursache liegt vermutlich wieder an der komplement"aren Anordnung der amorphen und kristallinen Gebiete in aufeinanderfolgenden Ebenen.
+    Es wechseln sich abwechselnd Ebenen mit hohen und niedrigen amorphen Anteil ab.
+    Wie in Abschnitt \ref{subsection:c_distrib} ist diese Anordnung eine Folge der Diffusion.
+    Die amorphen Gebiete entziehen benachbarten Ebenen den Kohlenstoff.
+    Die lokale Amorphisierungswahrscheinlichkeit wird erh"oht w"ahrend sie in der Nachbarebene kleiner wird.
+    Kurz vor $400 nm$ sinkt die Kohlenstoffkonzentration in den kristallinen Gebieten auf Null ab.
+    Der gesamte Kohlenstoff befindet sich in den amorphen Gebieten.
+    Hier beginnt die durchgehende amorphe Schicht.
+    Nachdem die Kohlenstoffkonzentration ihr Maximum bei $500 nm$ erreicht hat f"allt sie steil ab.
+    In einer Tiefe von $580 nm$ beginnt der Kohlenstoff wieder in den kristallinen Gebieten anzuwachsen.
+    Dies entspricht dem Ende der durchgehenden amorphen Schicht.
+    Die Konzentration im Kristallinen steigt, bis wieder der gesamte Kohlenstoff in den kristallinen Gebieten ist. 
+
+    \begin{figure}[h]
+    \begin{center}
+    \includegraphics[width=7cm]{z_zplus1_ver2.eps}
+    \end{center}
+    \caption{Amorph/Kristalline Struktur in zwei aufeinander folgenden Ebenen $z$ und $z+1$ im Tiefenbereich der lamellaren Strukturen.}
+    \label{img:z_zplus1_ver2}
+    \end{figure}
+    Abbildung \ref{img:z_zplus1_ver2} zeigt die amorph/kristalline Struktur in zwei aufeinander folgenden Ebenen $z$ und $z+1$ im Tiefenbereich der lamellaren Strukturen.
+    Sie best"atigt die Vermutung der komplement"aren Anordnung amorpher und kristalliner Gebiete in aufeinanderfolgenden Ebene in diesem Tiefenbereich.
+    Dies hebt erneut die Wichtigkeit der Diffusion f"ur den Selbstorganisationsprozess der lamellaren Strukturen hervor.
+
+    \subsection{Position und Ausdehnung der amorphen Phase}
+
+    \begin{figure}[h]
+    \includegraphics[width=12cm]{position_al.eps}
+    \caption{Simulierte Position und Ausdehnung der amorphen Schicht in Abh"angigkeit der Dosis (blau, rot). Dosisabh"angiges Kohlenstoffmaximum (gr"un).}
+    \label{img:position_sim}
+    \end{figure}
+    Abbildung \ref{img:position_sim} zeigt die aus der Simulation ermittelte Position und Ausdehnung der durchgehenden amorphen $SiC_x$-Schicht.
+    Zus"atzlich ist der Verlauf des Kohelnstoffmaximums eingezeichnet.
+    Die amorphe Schicht erstreckt sich um das Kohlenstoff-Verteilungsmaximum.
+    
     \subsection{Variation der Simulationsparameter}
 
-    \subsection{Kohlenstoffverteilung}
+    EDIT: verbessertes ergebnis der frfuehen dosen durch minimierung von $p_c$
 
-    \subsection{Variation der Ion-Target-Kombination}
+    EDIT: einfluss diffusion -> lamellarisierung
 
+    \subsection{Herstellung grosser Bereiche lamellarer Strukturen durch einen zweiten Implantationsschritt}
+
+    Im Folgenden soll ein Mechanismus zur Erzeugung grosser lamellarer Bereiche durch einen zweiten Implantationsschritt vorhergesagt werden.
+
+    Als Grundlage dient ein Silizium Target, dass wie bisher mit $180 keV$ $C^{+}$ beschossen wird.
+    Ein entsprechendes Implantationsprofil stellt sich ein.
+    Allerdings soll das Target durchgehend kristallin sein.
+    Dies l"asst sich experimentell durch Erh"ohung der Targettemeperatur erreichen.
+       
+    Das kristalline Target wird dann mit $10 MeV$ $C^{+}$ bei der gewohnten Implantationstemperatur von $150 \, ^{\circ} \mathrm{C}$ implantiert.
+    Abbildung \ref{img:nel_impl_1mev} zeigt das durch {/em TRIM} ermittelte nukleare Bremskraft- und Implantationsprofil.
+    Auf Grund der hohen Energie wird kaum noch Kohlenstoff in den bisher relevanten Tiefenbereich zur Ruhe kommen.
+    Des weiteren ist in diesen Bereich die nukleare Bremskraft, und damit die Wahrscheinlichkeit eines Sto"ses,  ann"ahernd konstant.
+    Man erwartet schnelle Amoprhisierung auf Grund des bereits existierenden Kohlenstoffs durch die erste Implantation.
+    
+