fixed eel, c-distr + model figure caption
[lectures/latex.git] / nlsop / diplom / grundlagen.tex
index ea00803..06272e5 100644 (file)
       Dann kann wie in \eqref{eq:trafo} die Transformation durchgef"uhrt werden.
       Die Werte f"ur $x$ werden nun nach der Transformationsmethode im Intervall $[a,b]$ gew"ahlt, die Werte f"ur $y$ m"ussen gleichverteilt im Intervall $[0,f(x)]$ sein.
 
-  \section{Ion-Festk"orper Wechselwirkung}
+  \section{Ion-Festk"orper-Wechselwirkung}
 
   Zur theoretischen Beschreibung der Ionenimplantation muss die Wechselwirkung der Ionen mit dem Target betrachtet werden.
   Durch St"o"se mit den Kernen und Elektronen des Targets werden die Ionen im Festk"orper abgelenkt und abgebremst.
       \subsubsection{Elektronische Bremskraft}
 
       Der elektronische Energieverlust der Ionen an den Elektronen des Targets kommt haupts"achlich durch inelastische Streuung zustande.
-      Dies f"uhrt zur Anregung beziehungsweise Ionisation des Targets.
+      Dies f"uhrt zur Anregung beziehungsweise Ionisation der Targetatome.
       Die elektronische Bremskraft ist abh"angig von der Energie der Ionen.
       Verschiedene Theorien beschreiben die Abbremsung unterschiedlich schneller Ionen.
-      Da in dieser Arbeit nur niedrige Projektilenergien (kleiner $0,1 \, Mev/amu$) behandelt werden, sollen Theorien f"ur den Hochenergiebereich hier nicht diskutiert werden.
-      F"ur hohe, nichtrelativistische Energien (kleiner $10 \, Mev/amu$) m"usste die Bethe-Bloch-Gleichung \cite{bethe_bloch} zur Beschreibung des elektronischen Energieverlustes herangezogen werden.
+      Da in dieser Arbeit nur niedrige Projektilenergien (kleiner $0,1 \, MeV/amu$) behandelt werden, sollen Theorien f"ur den Hochenergiebereich hier nicht diskutiert werden.
+      F"ur hohe, nichtrelativistische Energien (kleiner $10 \, MeV/amu$) m"usste die Bethe-Bloch-Gleichung \cite{bethe_bloch} zur Beschreibung des elektronischen Energieverlustes herangezogen werden.
       Zus"atzliche relativistische Effekte f"uhren zu einem Anstieg der Bremskraft bei noch h"oheren Energien.
 
       F"ur niedrige Teilchengeschwindigkeiten kann die elektronische Abbremsung mit Hilfe der LSS-Theorie \cite{lss} beschrieben werden.
       \end{equation}
       Die Proportionalit"atskonstante $k_L$ ist ein geschwindigkeitsunabh"angiger Ausdruck und beinhaltet die Abh"angigkeit der Bremskraft von der Kernladungszahl des Ions und des Targetatoms.
       Schaleneffekte und damit verbundene Oszillationen in der Abh"angigkeit der Kernladungszahl k"onnen durch einen weiteren Faktor $k_F$, den LSS-Korrekturfaktor, der durch experimentelle Ergebnisse angepasst wurde, ber"ucksichtigt werden.
-      In \cite{ziegler_biersack_littmark} wird die ZBL-Theorie vorgestellt, die auch die Oszillationen erkl"art.
-      Dabei werden alle Bremskr"afte auf experimentell genau bekannte Wasserstoff-Bremskr"afte f"ur jedes Element zur"uckgef"uhrt.
-      Die Wasserstoff-Bremskr"afte werden mittels der Brandt-Kitagawa-Theorie f"ur schwere Ionen im gleichen Target skaliert.
 
     \subsection{Implantationsprofil}
 
     Drei Zufallszahlen $R_1$, $R_2$ und $R_3$ werden auf die physikalischen Gr"o"sen freie Wegl"ange $l$, Sto"sparamter $p$ und den Azimutwinkel $\Phi$ abgebildet.
 
     Es gibt Ans"atze die freie Wegl"ange zuf"allig zu bestimmen.
-    F"ur niedrige Ionenenergien (kleiner $0,1 \, Mev/amu$) reicht es jedoch den amorphen Festk"orper durch eine feste freie Wegl"ange $l$ zu modellieren.
+    F"ur niedrige Ionenenergien (kleiner $0,1 \, MeV/amu$) reicht es jedoch den amorphen Festk"orper durch eine feste freie Wegl"ange $l$ zu modellieren.
     Diese ist gegeben durch den mittleren Abstand der Targetatome.
     \begin{equation}
     l = N^{- \frac{1}{3}}