ci soon and often
[lectures/latex.git] / nlsop / diplom / grundlagen.tex
index 12e3676..25addd7 100644 (file)
       Gleichverteilte Zufallszahlen $z_j$ in einem Intervall $[0,M[$ erh"alt man denkbar einfach durch skalieren der $x_j$ mit $M$.
       \begin{equation}
       z_j = M x_j = M \frac{I_j}{m}
+      \label{eq:gleichverteilte_r}
       \end{equation}
 
       \subsubsection{Zufallszahlen mit linear steigender Wahrscheinlichkeit}
+      \label{subsubsection:lin_g_p}
 
       Zufallszahlen deren Wahrscheinlichkeit mit ihrem Wert im Intervall $[0,Z[$ linear ansteigen
       \begin{equation}
@@ -78,6 +80,7 @@
       berechnet werden.
 
       \subsubsection{Verwerfungsmethode zur Erzeugung beliebiger Verteilungen}
+      \label{subsubsection:verwerf_meth}
 
       Mit Hilfe der Verwerfungsmethode k"onnen Zufallszahlen mit beliebiger Wahrscheinlichkeitsverteilung $p(x)$ generiert werden.
       Sie basiert auf einer einfachen geometrischen "Uberlegung (Abbildung \ref{img:rej_meth}).
 
     \subsection{Die Monte-Carlo-Simulation {\em TRIM}}
 
-    Mit Hilfe der Monte-Carlo-Simulation {\em TRIM} \cite{ziegler_biersack_littmark,biersack_haggmark} (kurz f"ur {\bf TR}ansport of {\bf I}ons in {\bf M}atter) k"onnen die tiefnabh"angigen Bremskr"afte und die Reichweitenverteilung simuliert werden.
+    Mit Hilfe der Monte-Carlo-Simulation {\em TRIM} \cite{ziegler_biersack_littmark,biersack_haggmark} (kurz f"ur {\bf TR}ansport of {\bf I}ons in {\bf M}atter) k"onnen die tiefenabh"angigen Bremskr"afte und die Reichweitenverteilung simuliert werden.
     Da in dieser Arbeit von {\em TRIM} simulierte nukleare Bremskraftprofile, Reichweitenverteilungen und Informationen aus den protokollierten Kollisionen verwendet werden, soll hier grob auf den Ablauf des Programms eingegangen werden.
 
-    
+    Das Programm folgt den Bahnen einer grossen Anzahl von Teilchen die in das Target implantiert werden.
+    Jedes Ion startet mit einer gegebenen Energie, Position und Richtung.
+    Die Teilchen vollziehen Richtungs"anderungen auf Grund von Kernst"o"sen mit den Atomen des Targets.
+    Zwischen zwei Kollisionen bewegt sich das Ion geradlinig innerhalb einer freien Wegl"ange.
+    Durch die nukleare und elektronische Bremskraft verliert das Teilchen Energie.
+    Die Verfolgung der Teilchenbahn terminiert wenn die Energie unter einen bestimmten Wert abgefallen oder das Teilchen das Taregt verlassen hat.
+    Das Target wird als amorph angenommen weshalb kristalline Richtungseigenschaften, wie zum Beispiel das sogenannte Channeling, ignoriert werden.
+    Der nukleare und elektronische Energieverlust werden unabh"angig voneinander behandelt.
+    Das Teilchen verliert einen diskreten Betrag der Energie durch Kernst"o"se und kontinuierlich auf Grund der elektronischen Bremskraft.
+   
+    Das einfallende Teilchen startet mit der Anfangsenergie $E = E_0$ an der Oberfl"ache des Targets.
+    Drei Zufallszahlen $R_1$, $R_2$ und $R_3$ werden auf die physikalischen Gr"o"sen freie Wegl"ange $l$, Energie"ubertrag $T$ und den Azimutwinkel $\Phi$ abgebildet.
+
+    Der Azimutwinkel $\Phi$ ist statistisch isotrop verteilt.
+    \begin{equation}
+    \Phi = 2 \pi R_3
+    \end{equation}
 
     \subsection{Strahlensch"aden und Amorphisierung}
 
     Dieser ist prportional zu den erzeugten Leerstellen und komplexeren Defekten im Target \cite{stein_vook_borders}.
 
     Die in einem prim"aren Sto"s verlagerten Atome, durch ein Ion der Energie $E$, kann nach Kinchin Pease \cite{kinchin_pease} zu
-    \[
+    \begin{equation}
     N_{p,d} = \frac{E}{E_d}
-    \]
+    \end{equation}
     abgesch"atzt werden.
 
     Gleichzeitig heilen Defekte aus, indem verlagerte Gitteratome an ihren Gitterplatz zur"uckkehren.