again more
[lectures/latex.git] / nlsop / diplom / grundlagen.tex
index 884199a..382b65b 100644 (file)
@@ -1,22 +1,23 @@
 \chapter{Grundlagen}
+\label{chapter:grundlagen}
 
   \section{Monte-Carlo-Simulation}
 
-  Monte-Carlo-Simulationen sind Computer-Experimente zur Untersuchung interessierender Sachverhalte, die auf stochastischen Simulationsalgorithemn basieren.
+  Monte-Carlo-Simulationen sind Computer-Experimente zur Untersuchung interessierender Sachverhalte, die auf stochastischen Simulationsalgorithmen basieren.
   Dabei werden vom Computer generierte Pseudozufallszahlen auf physikalische Gr"o"sen abgebildet.
   Den Ausgangspunkt bilden dabei sogenannte Standard-Pseudozufallszahlen, die auf einem vorgegebenen Intervall gleichverteilt sind.
   Hiervon ausgehend k"onnen beliebige Verteilungen durch Transformationen und Verwerfungsmethoden erzeugt werden.
 
     \subsection{Erzeugung gleichverteilter Pseudozufallszahlen}
 
-    Die h"aufigste Methode zur Erzeugung von Zufallszahlen ist die lineare Kongruenzmethode, welche eine Sequenz von ganzen Zahlen $I_1, I_2, I_3,$ \ldots aus dem Intervall $I = [0,m-1]$ generiert.
+    Die h"aufigste Methode zur Erzeugung von Zufallszahlen ist die lineare Kongruenzmethode, welche eine Sequenz von ganzen Zahlen $I_1, I_2, I_3, \ldots$ aus dem Intervall $I = [0,m-1]$ generiert.
     Dabei gilt folgende Vorschrift:
     \begin{equation} \label{eq:kon_m}
     I_{j+1} = ( a I_{j} + c ) \, mod \, m
     \end{equation}
     \[ m: \textrm{Modulus, } a: \textrm{Multiplikator, } c: \textrm{Inkrement, } I_0: \textrm{Startwert} \]
     Die Zufallszahlen k"onnen sich mit einer Periode, die offensichtlich nicht gr"o"ser als $m$ ist, wiederholen.
-    Die Qualit"at der Zufallszahlen h"angt dabei sehr stark von der Wahl der Konstanten $a, c, mI_0$ ab.
+    Die Qualit"at der Zufallszahlen h"angt dabei sehr stark von der Wahl der Konstanten $a, c, m$ und  $I_0$ ab.
     Leider gibt es keine einfache mathematische Methode zur Ermittlung optimaler Konstanten.
     Nach Park und Miller \cite{park_miller_zufall} erf"ullt man mit
     \begin{equation} \label{eq:kon_v}
       Gleichverteilte Zufallszahlen $z_j$ in einem Intervall $[0,M[$ erh"alt man denkbar einfach durch skalieren der $x_j$ mit $M$.
       \begin{equation}
       z_j = M x_j = M \frac{I_j}{m}
+      \label{eq:gleichverteilte_r}
       \end{equation}
 
       \subsubsection{Zufallszahlen mit linear steigender Wahrscheinlichkeit}
+      \label{subsubsection:lin_g_p}
 
       Zufallszahlen deren Wahrscheinlichkeit mit ihrem Wert im Intervall $[0,Z[$ linear ansteigen
       \begin{equation}
@@ -78,6 +81,7 @@
       berechnet werden.
 
       \subsubsection{Verwerfungsmethode zur Erzeugung beliebiger Verteilungen}
+      \label{subsubsection:verwerf_meth}
 
       Mit Hilfe der Verwerfungsmethode k"onnen Zufallszahlen mit beliebiger Wahrscheinlichkeitsverteilung $p(x)$ generiert werden.
       Sie basiert auf einer einfachen geometrischen "Uberlegung (Abbildung \ref{img:rej_meth}).
       S_n(E) = \int_0^{T_{max}} T d \sigma
       \end{equation}
 
+      Nun muss noch ein geeignetes interatomares Potential $V(r)$ zur Beschreibung der Wechselwirkung der Ionen mit dem Festk"orper gefunden werden.
       F"ur das interatomare Potential $V(r)$ wird oft ein abgeschirmtes Coulomb-Potential verwendet \cite{ziegler_biersack_littmark}.
       \[
       V(r) = \frac{Z_1 Z_2 e^2}{4 \pi \epsilon_0 r} \Phi(\frac{r}{a})
       \]
       Dabei ist $\Phi$ eine geeignete Abschirmfunktion und $a$ der sogenannte Abschirmparameter in der Gr"o"senordnung des Bohrradius.
-     Die besten "Ubereinstimmungen mit dem Experiment erh"alt man durch Verwendung des sogenannten \dq universal potential\dq{} \cite{ziegler_biersack_littmark}, dass von Ziegler et al. mit verbesserten Methoden, unter anderem dem Anfitten von Daten zahlreicher Ion-Target-Kombinationen an die Abschirmfunktion, eingef"uhrt wurde.
+      Die Abschirmfunktion beachtet die Abschirumung des Coulombpotentials der Kerne des Ions und des Targetatoms durch die Elektronen.
+      Die besten "Ubereinstimmungen mit dem Experiment erh"alt man durch Verwendung des sogenannten \dq universal potential\dq{} \cite{ziegler_biersack_littmark}, dass von Ziegler et al. mit verbesserten Methoden, unter anderem dem Anfitten von Daten zahlreicher Ion-Target-Kombinationen an die Abschirmfunktion, eingef"uhrt wurde.
+      Diese ist in guter N"aherung f"ur alle Ion-Target-Kombinationen g"ultig.
+      Desweiteren schl"agt Biersack in \cite{ziegler_biersack_littmark} eine analytische N"aherungsformel zur einfachen Berechnung des Ablenkwinkels $\Theta$ aus dem Sto"sparameter $p$ vor.
 
       \subsubsection{Elektronische Bremskraft}
 
       Die Bremskraft ist proportional zur Geschwindigkeit, also proportional zur Wurzel aus der Energie des Ions.
       \begin{equation}
       S_e(E) = k_L \sqrt{E}
+      \label{eq:el_sp}
       \end{equation}
       Die Proportionalit"atskonstante $k_L$ ist ein geschwindigkeitsunabh"angiger Ausdruck und beachtet die Abh"angigkeit der Bremskraft von der Kernladungszahl des Ions und der Targetatome.
       Schaleneffekte und damit verbundene Oszillationen in der Abh"angigkeit der Kernladungszahl k"onnen durch einen weiteren Faktor $k_F$, den LSS-Korrekturfaktor, der durch experimentelle Ergebnisse angepasst wurde, beachtet werden.
 
     \subsection{Implantationsprofil}
 
-    Mit den im letzten Abschnitt bestimmten Bremsquerschnitten $S_n$ uund $S_e$ kann nun mittels \eqref{eq:range} die mittlere Reichweite $R$ der Ionen angegeben werden.
+    Mit den im letzten Abschnitt bestimmten Bremsquerschnitten $S_n$ und $S_e$ kann nun mittels \eqref{eq:range} die mittlere Reichweite $R$ der Ionen angegeben werden.
     Diese ist allerdings ungleich der mittleren Tife, in der das Ion zur Ruhe kommt, da das implantierte Ion seine Richtung nach jedem Sto"s ver"andern wird.
     Die so erhaltene projezierte Reichweite $R_p$ und deren Standardabweichung $\Delta R_p$ k"onnen durch L"osung von Integro-Differentialgleichungen \cite{lss_2} berechnet werden.
 
 
     \subsection{Die Monte-Carlo-Simulation {\em TRIM}}
 
-    Mit Hilfe der Monte-Carlo-Simulation {\em TRIM} \cite{ziegler_biersack_littmark,biersack_haggmark} (kurz f"ur {\bf TR}ansport of {\bf I}ons in {\bf M}atter) k"onnen die tiefnabh"angigen Bremskr"afte und die Reichweitenverteilung simuliert werden.
+    Mit Hilfe der Monte-Carlo-Simulation {\em TRIM} \cite{ziegler_biersack_littmark,biersack_haggmark} (kurz f"ur {\bf TR}ansport of {\bf I}ons in {\bf M}atter) k"onnen die tiefenabh"angigen Bremskr"afte und die Reichweitenverteilung simuliert werden.
     Da in dieser Arbeit von {\em TRIM} simulierte nukleare Bremskraftprofile, Reichweitenverteilungen und Informationen aus den protokollierten Kollisionen verwendet werden, soll hier grob auf den Ablauf des Programms eingegangen werden.
 
     Das Programm folgt den Bahnen einer grossen Anzahl von Teilchen die in das Target implantiert werden.
     Das Teilchen verliert einen diskreten Betrag der Energie durch Kernst"o"se und kontinuierlich auf Grund der elektronischen Bremskraft.
    
     Das einfallende Teilchen startet mit der Anfangsenergie $E = E_0$ an der Oberfl"ache des Targets.
-    Drei Zufallszahlen $R_1$, $R_2$ und $R_3$ werden auf die physikalischen Gr"o"sen freie Wegl"ange $l$, Energie"ubertrag $T$ und den Azimutwinkel $\Phi$ abgebildet.
+    Drei Zufallszahlen $R_1$, $R_2$ und $R_3$ werden auf die physikalischen Gr"o"sen freie Wegl"ange $l$, Sto"sparamter $p$ und den Azimutwinkel $\Phi$ abgebildet.
+
+    Es gibt Ans"atze die freie Wegl"ange zuf"allig zu bestimmen.
+    F"ur niedrige Ionenenergien (kleiner $0,1 Mev/amu$) reicht es jedoch den amorphen Festk"orper durch eine feste freie Wegl"ange $l$ zu modellieren.
+    Diese ist gegeben durch den mittleren Abstand der Targetatome.
+    \begin{equation}
+    l = N^{- \frac{1}{3}}
+    \end{equation}
+    F"ur gr"ossere Energien muss der M"oglichkeit gr"osserer freier Wegl"angen Rechnung getragen werden und eine entsprechende Abbildung von $R_1$ auf $l$ ist n"otig \cite{ziegler_biersack_littmark}.
+
+    Danach wird der Sto"sparameter durch
+    \begin{equation}
+    p = p_{max} R_2
+    \end{equation}
+    bestimmt.
+    Dabei gilt f"ur das Maximum $p_{max}$ des Sto"sparameters: $\pi p^2_{max} l = N^{-1}$.
 
     Der Azimutwinkel $\Phi$ ist statistisch isotrop verteilt.
     \begin{equation}
     \Phi = 2 \pi R_3
     \end{equation}
 
+    Mit Hilfe der von Biersack entwickelten \dq magic formula\dq{} \cite{ziegler_biersack_littmark} kann aus dem Sto"ssparamter $p$ analytisch der Streuwinkel $\Theta$ errechnet werden.
+    Mit Hilfe des Ablenkwinkels wird dann durch \eqref{eq:final_delta_e} der Energie"ubertrag $\Delta E$ bestimmt.
+    Der elektronische Energieverlust ergibt sich aus dem Produkt der freien Wegl"ange $l$ mit dem Ausdruck f"ur die elektronische Bremskraft $S_e(E)$ aus \eqref{eq:el_sp} und der atomaren Dichte $N$.
+    Durch die freie Wegl"ange und den Ablenk- und Azimutwinkel ist der Ort des n"achsten Sto"sprozesses festgelegt.
+    Die Koordinaten und der Energie"ubertrag jedes Sto"ses werden protokolliert, womit die nukleare und elektronische Bremskraft bestimmt ist.
+    Die Koordinaten der Ionen die unter einen bestimmten Energiebetrag abgefallen sind merkt sich das Programm ebenfalls.
+    Damit ist das Implantationsprofil bekannt.
+
     \subsection{Strahlensch"aden und Amorphisierung}
 
     Durch die Bestrahlung des Targets werden Sch"aden im Kristallgitter hervorgerufen.